論文の概要: Weakly-Supervised Learning of Visual Relations in Multimodal Pretraining
- arxiv url: http://arxiv.org/abs/2305.14281v1
- Date: Tue, 23 May 2023 17:27:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 14:04:58.272459
- Title: Weakly-Supervised Learning of Visual Relations in Multimodal Pretraining
- Title(参考訳): マルチモーダルプリトレーニングにおける視覚関係の弱教師付き学習
- Authors: Emanuele Bugliarello, Aida Nematzadeh, Lisa Anne Hendricks
- Abstract要約: マルチモーダルな設定で視覚的実体を文脈化するための2つの事前学習手法を提案する。
言語化されたシーングラフを用いて、視覚関係のトリプレットを構造化キャプションに変換し、それらを画像の付加的なビューとして扱う。
マスク付き関係予測では、視覚的にマスクされたコンテキストからの関連エンティティをさらに奨励する。
- 参考スコア(独自算出の注目度): 25.759093549987647
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work in vision-and-language pretraining has investigated supervised
signals from object detection data to learn better, fine-grained multimodal
representations. In this work, we take a step further and explore how we add
supervision from small-scale visual relation data. In particular, we propose
two pretraining approaches to contextualise visual entities in a multimodal
setup. With verbalised scene graphs, we transform visual relation triplets into
structured captions, and treat them as additional views of images. With masked
relation prediction, we further encourage relating entities from visually
masked contexts. When applied to strong baselines pretrained on large amounts
of Web data, zero-shot evaluations on both coarse-grained and fine-grained
tasks show the efficacy of our methods in learning multimodal representations
from weakly-supervised relations data.
- Abstract(参考訳): 視覚・言語事前学習における最近の研究は、オブジェクト検出データからの教師付き信号を調べ、より精密なマルチモーダル表現を学習している。
そこで本研究では,小規模視覚関係データからの監視をいかに追加するかを,さらに詳しく検討する。
特に,マルチモーダルな設定で視覚エンティティをコンテキスト化するための2つの事前学習手法を提案する。
言語化されたシーングラフを用いて、視覚関係のトリプレットを構造化キャプションに変換し、画像の追加ビューとして扱う。
マスキング関係予測により、視覚的にマスキングされたコンテキストから関連づけることをさらに奨励する。
大量のwebデータに事前学習された強力なベースラインに適用すると,粗粒度と細粒度の両方のタスクにおけるゼロショット評価が,弱教師付き関係データからマルチモーダル表現を学習する手法の有効性を示す。
関連論文リスト
- Visual Analytics for Efficient Image Exploration and User-Guided Image
Captioning [35.47078178526536]
事前訓練された大規模言語画像モデルの最近の進歩は、視覚的理解の新しい時代を後押ししている。
本稿では,視覚分析の領域でよく知られた2つの問題に取り組み,(1)大規模画像データセットの効率的な探索と潜在的なデータバイアスの同定,(2)画像キャプションの評価と生成過程のステアリングを行う。
論文 参考訳(メタデータ) (2023-11-02T06:21:35Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
自己教師型学習フレームワークにおける視覚言語表現学習手法を提案する。
画像中の領域をソフトメイキングすることで、画像テキストマッチング(ITM)タスクの多様な特徴を生成する。
マルチモーダルエンコーダを用いて単語条件の視覚的注意を計算し,各単語に関連する領域を同定する。
論文 参考訳(メタデータ) (2023-04-03T05:07:49Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z) - Multimodal Contrastive Training for Visual Representation Learning [45.94662252627284]
マルチモーダルデータを取り入れた視覚表現の学習手法を開発した。
本手法は,各モダリティおよびセマンティクス情報内の本質的なデータ特性をクロスモーダル相関から同時に利用する。
統合フレームワークにマルチモーダルトレーニングを組み込むことで,より強力で汎用的な視覚的特徴を学習することができる。
論文 参考訳(メタデータ) (2021-04-26T19:23:36Z) - MAF: Multimodal Alignment Framework for Weakly-Supervised Phrase
Grounding [74.33171794972688]
本稿では,詳細な視覚表現と視覚認識言語表現を活用することで,句オブジェクトの関連性をモデル化するアルゴリズムを提案する。
広く採用されているFlickr30kデータセットで実施された実験は、既存の弱教師付き手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2020-10-12T00:43:52Z) - Improving Image Captioning with Better Use of Captions [65.39641077768488]
本稿では,画像表現とキャプション生成の両方を強化するために,キャプションで利用可能なセマンティクスをよりよく探求するための新しい画像キャプションアーキテクチャを提案する。
我々のモデルはまず,弱教師付きマルチインスタンス学習を用いて,有益な帰納バイアスをもたらすキャプション誘導型視覚関係グラフを構築した。
生成期間中、このモデルは、単語とオブジェクト/述語タグのシーケンスを共同で予測するために、マルチタスク学習を用いた視覚関係をさらに取り入れる。
論文 参考訳(メタデータ) (2020-06-21T14:10:47Z) - Behind the Scene: Revealing the Secrets of Pre-trained
Vision-and-Language Models [65.19308052012858]
最近のTransformerベースの大規模事前学習モデルは、視覚言語(V+L)研究に革命をもたらした。
VALUEは,マルチモーダル事前学習における内部動作の解明を目的とした,精密に設計された探索タスクのセットである。
主要な観察:事前訓練されたモデルは、推論中の画像よりもテキストに出席する傾向を示す。
論文 参考訳(メタデータ) (2020-05-15T01:06:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。