論文の概要: Can LLMs Convert Graphs to Text-Attributed Graphs?
- arxiv url: http://arxiv.org/abs/2412.10136v2
- Date: Fri, 07 Feb 2025 01:29:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:54:43.689295
- Title: Can LLMs Convert Graphs to Text-Attributed Graphs?
- Title(参考訳): LLMはグラフをテキスト分散グラフに変換することができるか?
- Authors: Zehong Wang, Sidney Liu, Zheyuan Zhang, Tianyi Ma, Chuxu Zhang, Yanfang Ye,
- Abstract要約: 既存のグラフをテキスト対応グラフに変換するために,Topology-Aware Node description Synthesis (TANS)を提案する。
我々はTANSをテキストリッチ,テキスト制限,テキストフリーのグラフで評価し,その適用性を示した。
- 参考スコア(独自算出の注目度): 35.53046810556242
- License:
- Abstract: Graphs are ubiquitous structures found in numerous real-world applications, such as drug discovery, recommender systems, and social network analysis. To model graph-structured data, graph neural networks (GNNs) have become a popular tool. However, existing GNN architectures encounter challenges in cross-graph learning where multiple graphs have different feature spaces. To address this, recent approaches introduce text-attributed graphs (TAGs), where each node is associated with a textual description, which can be projected into a unified feature space using textual encoders. While promising, this method relies heavily on the availability of text-attributed graph data, which is difficult to obtain in practice. To bridge this gap, we propose a novel method named Topology-Aware Node description Synthesis (TANS), leveraging large language models (LLMs) to convert existing graphs into text-attributed graphs. The key idea is to integrate topological information into LLMs to explain how graph topology influences node semantics. We evaluate our TANS on text-rich, text-limited, and text-free graphs, demonstrating its applicability. Notably, on text-free graphs, our method significantly outperforms existing approaches that manually design node features, showcasing the potential of LLMs for preprocessing graph-structured data in the absence of textual information. The code and data are available at https://github.com/Zehong-Wang/TANS.
- Abstract(参考訳): グラフは、ドラッグ発見、レコメンダシステム、ソーシャルネットワーク分析など、多くの現実世界のアプリケーションで見られるユビキタスな構造である。
グラフ構造化データをモデル化するために、グラフニューラルネットワーク(GNN)が一般的なツールとなっている。
しかし、既存のGNNアーキテクチャは、複数のグラフが異なる特徴空間を持つクロスグラフ学習の課題に直面している。
これを解決するために、近年のアプローチでは、各ノードがテキスト記述に関連付けられ、テキストエンコーダを使用して統一された特徴空間に投影できる、テキスト分散グラフ(TAG)を導入している。
有望ではあるが,本手法は,実際に入手が困難であるテキスト分散グラフデータの可用性に大きく依存している。
このギャップを埋めるために,既存のグラフをテキスト対応グラフに変換するために,大規模言語モデル(LLM)を活用する,Topology-Aware Node description Synthesis (TANS) という新しい手法を提案する。
鍵となる考え方は、グラフトポロジがノードセマンティクスにどのように影響するかを説明するために、LLMにトポロジ情報を統合することである。
我々はTANSをテキストリッチ,テキスト制限,テキストフリーのグラフで評価し,その適用性を示した。
特に,テキストのないグラフでは,ノードの特徴を手動で設計する既存の手法よりも優れており,テキスト情報のないグラフ構造化データの事前処理における LLM の可能性を示している。
コードとデータはhttps://github.com/Zehong-Wang/TANSで公開されている。
関連論文リスト
- Query-Aware Learnable Graph Pooling Tokens as Prompt for Large Language Models [3.9489815622117566]
Learnable Graph Pooling Token (LGPT)は、フレキシブルで効率的なグラフ表現を可能にする。
提案手法は,大規模言語モデルを訓練することなく,GraphQAベンチマークで4.13%の性能向上を実現している。
論文 参考訳(メタデータ) (2025-01-29T10:35:41Z) - Node Level Graph Autoencoder: Unified Pretraining for Textual Graph Learning [45.70767623846523]
我々は,Node Level Graph AutoEncoder (NodeGAE) という,教師なしの新たな学習オートエンコーダフレームワークを提案する。
我々は、自動エンコーダのバックボーンとして言語モデルを使用し、テキスト再構成を事前訓練する。
本手法は,学習過程における単純さを維持し,多種多様なテキストグラフや下流タスクの一般化性を示す。
論文 参考訳(メタデータ) (2024-08-09T14:57:53Z) - Hierarchical Compression of Text-Rich Graphs via Large Language Models [63.75293588479027]
テキストリッチグラフは、eコマースや学術グラフのようなデータマイニングの文脈で広く使われている。
本稿では,LLMの能力とテキストリッチグラフの構造を整合させる新しい手法であるHiComを紹介する。
HiComは、Eコマースと引用グラフのノード分類において、GNNとLLMのバックボーンよりも優れている。
論文 参考訳(メタデータ) (2024-06-13T07:24:46Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
Graph-awareを導入します。
GPEFT - グラフ表現学習のための新しい手法。
グラフニューラルネットワーク(GNN)を用いて、隣接するノードからグラフプロンプトに構造情報をエンコードする。
我々は8つの異なるテキストリッチグラフで実施した総合的な実験を通じて,リンク予測評価において hit@1 と Mean Reciprocal Rank (MRR) の平均 2% の改善を観察し,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-04-28T18:36:59Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
大規模言語モデル(LLM)は、特に知識集約的なタスクにおいて幻覚に悩まされる。
既存の研究は、外部知識コーパスから取得した個々のテキスト単位でLLMを拡張することを提案する。
本稿では,グラフを反復的に推論することで,LLMをグラフで拡張するためのGraph Chain-of-thinkt (Graph-CoT) というフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-10T15:41:53Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
現実のテキストグラフを対象とするフレキシブルな問合せフレームワークを開発した。
一般のテキストグラフに対する最初の検索拡張生成(RAG)手法を提案する。
G-Retrieverは、このタスクをSteiner Tree最適化問題として定式化し、グラフ上でRAGを実行する。
論文 参考訳(メタデータ) (2024-02-12T13:13:04Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
グラフ上の大規模言語モデルに関連するシナリオとテクニックを体系的にレビューする。
まず,LLMをグラフに適用する可能性シナリオを,純グラフ,テキスト分散グラフ,テキストペアグラフの3つのカテゴリにまとめる。
本稿では,そのような手法の現実的な応用について論じ,オープンソースコードとベンチマークデータセットを要約する。
論文 参考訳(メタデータ) (2023-12-05T14:14:27Z) - GraphText: Graph Reasoning in Text Space [32.00258972022153]
GraphTextはグラフを自然言語に変換するフレームワークである。
GraphTextは、教師付きトレーニングされたグラフニューラルネットワークのパフォーマンスに匹敵する、あるいは超えることができる。
インタラクティブなグラフ推論の道を開くことで、人間とLLMの両方が自然言語を使ってシームレスにモデルと通信できるようになる。
論文 参考訳(メタデータ) (2023-10-02T11:03:57Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
テキスト分散グラフ(TAG)におけるテキストとノードの分離表現を共同学習するためのContrastive Graph-Text Pretraining(ConGraT)を提案する。
提案手法は言語モデル(LM)とグラフニューラルネットワーク(GNN)を訓練し,CLIPにインスパイアされたバッチワイドコントラスト学習目標を用いて,それらの表現を共通の潜在空間に整列させる。
実験により、ConGraTは、ノードとテキストのカテゴリ分類、リンク予測、言語モデリングなど、さまざまな下流タスクのベースラインよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-23T17:53:30Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。