論文の概要: FEDORA: Flying Event Dataset fOr Reactive behAvior
- arxiv url: http://arxiv.org/abs/2305.14392v2
- Date: Fri, 15 Mar 2024 21:28:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 04:32:24.791238
- Title: FEDORA: Flying Event Dataset fOr Reactive behAvior
- Title(参考訳): FEDORA:Flying Event Dataset fOr Reactive behAvior
- Authors: Amogh Joshi, Adarsh Kosta, Wachirawit Ponghiran, Manish Nagaraj, Kaushik Roy,
- Abstract要約: イベントベースのセンサーは、高速な動きを捉えるための標準フレームベースのカメラに代わる低レイテンシと低エネルギーの代替として登場した。
Flying Eventデータセット fOr Reactive behAviour (FEDORA) - 知覚タスクのための完全に合成されたデータセット。
- 参考スコア(独自算出の注目度): 9.470870778715689
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability of resource-constrained biological systems such as fruitflies to perform complex and high-speed maneuvers in cluttered environments has been one of the prime sources of inspiration for developing vision-based autonomous systems. To emulate this capability, the perception pipeline of such systems must integrate information cues from tasks including optical flow and depth estimation, object detection and tracking, and segmentation, among others. However, the conventional approach of employing slow, synchronous inputs from standard frame-based cameras constrains these perception capabilities, particularly during high-speed maneuvers. Recently, event-based sensors have emerged as low latency and low energy alternatives to standard frame-based cameras for capturing high-speed motion, effectively speeding up perception and hence navigation. For coherence, all the perception tasks must be trained on the same input data. However, present-day datasets are curated mainly for a single or a handful of tasks and are limited in the rate of the provided ground truths. To address these limitations, we present Flying Event Dataset fOr Reactive behAviour (FEDORA) - a fully synthetic dataset for perception tasks, with raw data from frame-based cameras, event-based cameras, and Inertial Measurement Units (IMU), along with ground truths for depth, pose, and optical flow at a rate much higher than existing datasets.
- Abstract(参考訳): ショウジョウバエのような資源に制約された生物系が、乱雑な環境で複雑で高速な操作を行う能力は、視覚に基づく自律システムを開発する上でのインスピレーションの1つとなっている。
この能力をエミュレートするために、そのようなシステムの知覚パイプラインは、光学フローや深度推定、物体の検出と追跡、セグメンテーションなどのタスクからの情報キューを統合する必要がある。
しかし、標準フレームカメラからの遅い同期入力を用いる従来のアプローチは、特に高速操作において、これらの知覚能力を制限している。
近年、イベントベースのセンサーは、高速な動きを捉え、知覚を効果的にスピードアップし、ナビゲーションを行うための標準フレームベースのカメラに代わる、低レイテンシと低エネルギーの代替品として出現している。
コヒーレンスのためには、すべての知覚タスクは、同じ入力データに基づいてトレーニングされなければならない。
しかし、現在のデータセットは、主に1つまたは少数のタスクのためにキュレートされ、提供された土台真実の速度に制限されている。
これらの制限に対処するため、Flying Event Dataset fOr Reactive behAviour (FEDORA) – フレームベースのカメラ、イベントベースのカメラ、慣性計測ユニット(IMU)の生データとともに、既存のデータセットよりもはるかに高いレートで、知覚タスクのための完全な合成データセットを提供する。
関連論文リスト
- Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
生物学的網膜にインスパイアされたイベントベースのカメラは、最小限の電力要求、無視できるレイテンシ、時間分解能、拡張可能なダイナミックレンジによって区別される最先端のセンサーへと進化してきた。
イベントベースのカメラは、高速撮像のシナリオにおいて、外部データ伝送を誘発し、動きのぼやけをなくすことによって制限に対処する。
本稿では,特に自律運転における研究と応用について概観する。
論文 参考訳(メタデータ) (2024-07-05T06:17:00Z) - Motion Segmentation for Neuromorphic Aerial Surveillance [42.04157319642197]
イベントカメラは優れた時間分解能、優れたダイナミックレンジ、最小限の電力要件を提供する。
固定間隔で冗長な情報をキャプチャする従来のフレームベースのセンサーとは異なり、イベントカメラは画素レベルの明るさ変化を非同期に記録する。
本稿では,イベントデータと光フロー情報の両方に自己監督型視覚変換器を利用する動き分割手法を提案する。
論文 参考訳(メタデータ) (2024-05-24T04:36:13Z) - Self-supervised Event-based Monocular Depth Estimation using Cross-modal
Consistency [18.288912105820167]
EMoDepth という自己教師型イベントベース単眼深度推定フレームワークを提案する。
EMoDepthは、ピクセル座標内のイベントに整合した強度フレームからのクロスモーダル一貫性を使用して、トレーニングプロセスを制約する。
推論では、単分子深度予測にはイベントのみを使用する。
論文 参考訳(メタデータ) (2024-01-14T07:16:52Z) - Un-EvMoSeg: Unsupervised Event-based Independent Motion Segmentation [33.21922177483246]
イベントカメラは、高時間分解能、高ダイナミックレンジ、低消費電力で知られている、生物学的にインスパイアされた新しいタイプの視覚センサである。
幾何学的制約を用いたIMO擬似ラベルを生成する最初のイベントフレームワークを提案する。
この手法は教師なしの性質のため、任意の数の未定オブジェクトを処理でき、高価なIMOラベルが手に入らないデータセットに容易に拡張できる。
論文 参考訳(メタデータ) (2023-11-30T18:59:32Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - On the Generation of a Synthetic Event-Based Vision Dataset for
Navigation and Landing [69.34740063574921]
本稿では,最適な着陸軌道からイベントベースの視覚データセットを生成する手法を提案する。
我々は,惑星と小惑星の自然シーン生成ユーティリティを用いて,月面のフォトリアリスティックな画像のシーケンスを構築した。
パイプラインは500トラジェクトリのデータセットを構築することで,表面特徴の現実的なイベントベース表現を生成することができることを示す。
論文 参考訳(メタデータ) (2023-08-01T09:14:20Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
ローカライゼーションとマッピングタスクのための非同期および不規則なイベントストリームの利点を利用する、イベントベースのvSLAMアルゴリズムのレビュー。
Paperは、イベントベースのvSLAMメソッドを、特徴ベース、ダイレクト、モーション補償、ディープラーニングの4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-04-19T16:21:14Z) - EV-Catcher: High-Speed Object Catching Using Low-latency Event-based
Neural Networks [107.62975594230687]
イベントカメラが優れており、高速移動物体の衝突位置を正確に推定するアプリケーションを実証する。
イベントデータを低レイテンシでエンコードするために,Binary Event History Image(BEHI)と呼ばれる軽量なイベント表現を導入する。
計算制約のある組込みプラットフォーム上でも最大13m/sの速さで, 異なる場所をターゲットとした球のキャッチにおいて, 81%の成功率を達成することができることを示す。
論文 参考訳(メタデータ) (2023-04-14T15:23:28Z) - SCFlow: Optical Flow Estimation for Spiking Camera [50.770803466875364]
スパイキングカメラは、特に高速シーンのモーション推定において、現実の応用において大きな可能性を秘めている。
光フロー推定は画像ベースおよびイベントベースの視覚において顕著な成功を収めているが、既存の手法はスパイクカメラからのスパイクストリームに直接適用することはできない。
本稿では、スパイキングカメラのための光フロー推定のための新しいディープラーニングパイプラインSCFlowについて述べる。
論文 参考訳(メタデータ) (2021-10-08T06:16:45Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z) - Back to Event Basics: Self-Supervised Learning of Image Reconstruction
for Event Cameras via Photometric Constancy [0.0]
イベントカメラは、非同期な方法で、低レイテンシで高時間分解能の輝度インクリメントをサンプリングする新しい視覚センサである。
本稿では,光学的フロー推定のための新しい軽量ニューラルネットワークを提案する。
複数のデータセットにまたがる結果から、提案した自己教師型アプローチのパフォーマンスは最先端技術と一致していることがわかる。
論文 参考訳(メタデータ) (2020-09-17T13:30:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。