論文の概要: Unsupervised Spiking Neural Network Model of Prefrontal Cortex to study
Task Switching with Synaptic deficiency
- arxiv url: http://arxiv.org/abs/2305.14394v1
- Date: Tue, 23 May 2023 05:59:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 00:24:42.797732
- Title: Unsupervised Spiking Neural Network Model of Prefrontal Cortex to study
Task Switching with Synaptic deficiency
- Title(参考訳): シナプス欠損を伴うタスクスイッチング研究のための前頭前野の教師なしスパイクニューラルネットワークモデル
- Authors: Ashwin Viswanathan Kannan, Goutam Mylavarapu and Johnson P Thomas
- Abstract要約: スパイキングニューラルネットワーク(SNN)を用いた前頭前皮質(PFC)の計算モデルを構築した。
本研究では,SNNが生物学的に妥当な値に近いパラメータを持ち,教師なしのスパイクタイミング依存塑性(STDP)学習規則を用いてモデルを訓練する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we build a computational model of Prefrontal Cortex (PFC)
using Spiking Neural Networks (SNN) to understand how neurons adapt and respond
to tasks switched under short and longer duration of stimulus changes. We also
explore behavioral deficits arising out of the PFC lesions by simulating
lesioned states in our Spiking architecture model. Although there are some
computational models of the PFC, SNN's have not been used to model them. In
this study, we use SNN's having parameters close to biologically plausible
values and train the model using unsupervised Spike Timing Dependent Plasticity
(STDP) learning rule. Our model is based on connectionist architectures and
exhibits neural phenomena like sustained activity which helps in generating
short-term or working memory. We use these features to simulate lesions by
deactivating synaptic pathways and record the weight adjustments of learned
patterns and capture the accuracy of learning tasks in such conditions. All our
experiments are trained and recorded using a real-world Fashion MNIST (FMNIST)
dataset and through this work, we bridge the gap between bio-realistic models
and those that perform well in pattern recognition tasks
- Abstract(参考訳): 本研究では,spyking neural network (snn) を用いた前頭前野(pfc)の計算モデルを構築し,刺激変化の短期的・長期的変化下での課題へのニューロンの適応と対応を理解する。
また,spiking architectureモデルにおいて,pfc病変から生じる行動障害をシミュレートして検討した。
PFCにはいくつかの計算モデルがあるが、SNNはそれらをモデル化するのに使われていない。
本研究では,SNNが生物学的に妥当な値に近いパラメータを持ち,教師なしスパイクタイミング依存塑性(STDP)学習規則を用いてモデルを訓練する。
我々のモデルはコネクショニストアーキテクチャに基づいており、短期記憶や作業記憶の生成に役立つ持続活動のような神経現象を示す。
これらの特徴を,シナプス経路を切断して病変をシミュレートし,学習パターンの重み付けを記録し,そのような状況下での学習タスクの正確さを捉える。
私たちの実験はすべて、実世界のファッションmnist(fmnist)データセットを使ってトレーニングされ、記録されます。この研究を通じて、バイオリアリスティックモデルとパターン認識タスクでうまく機能するモデルとの間のギャップを埋めることができます。
関連論文リスト
- Autaptic Synaptic Circuit Enhances Spatio-temporal Predictive Learning of Spiking Neural Networks [23.613277062707844]
Spiking Neural Networks (SNNs) は、生物学的ニューロンで見られる統合ファイアリーク機構をエミュレートする。
既存のSNNは、主にIntegrate-and-Fire Leaky(LIF)モデルに依存している。
本稿では,S-patioTemporal Circuit (STC) モデルを提案する。
論文 参考訳(メタデータ) (2024-06-01T11:17:27Z) - Meta-Learning in Spiking Neural Networks with Reward-Modulated STDP [2.179313476241343]
本研究では,海馬と前頭前皮質にインスパイアされた生物工学的メタラーニングモデルを提案する。
我々の新しいモデルはスパイクベースのニューロモーフィックデバイスに容易に適用でき、ニューロモーフィックハードウェアにおける高速な学習を可能にする。
論文 参考訳(メタデータ) (2023-06-07T13:08:46Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - An Unsupervised STDP-based Spiking Neural Network Inspired By
Biologically Plausible Learning Rules and Connections [10.188771327458651]
スパイク刺激依存性可塑性(STDP)は脳の一般的な学習規則であるが、STDPだけで訓練されたスパイクニューラルネットワーク(SNN)は非効率であり、性能が良くない。
我々は適応的なシナプスフィルタを設計し、SNNの表現能力を高めるために適応的なスパイキングしきい値を導入する。
我々のモデルは、MNISTおよびFashionMNISTデータセットにおける教師なしSTDPベースのSNNの最先端性能を実現する。
論文 参考訳(メタデータ) (2022-07-06T14:53:32Z) - Single-phase deep learning in cortico-cortical networks [1.7249361224827535]
バーストCCNは,バースト活動,短期可塑性,樹状突起を対象とする神経介在物を統合した新しいモデルである。
以上の結果から,脳内皮下,細胞下,マイクロサーキット,システムレベルでの皮質的特徴は,脳内単相効率の深層学習と一致していることが示唆された。
論文 参考訳(メタデータ) (2022-06-23T15:10:57Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - SpikePropamine: Differentiable Plasticity in Spiking Neural Networks [0.0]
スパイキングニューラルネットワーク(SNN)におけるシナプス可塑性と神経調節シナプス可塑性のダイナミクスを学習するための枠組みを導入する。
異なる可塑性で強化されたSNNは、時間的学習課題の集合を解決するのに十分であることを示す。
これらのネットワークは、高次元のロボット学習タスクで移動を生成できることも示されている。
論文 参考訳(メタデータ) (2021-06-04T19:29:07Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。