論文の概要: Learning in Spiking Neural Networks with a Calcium-based Hebbian Rule for Spike-timing-dependent Plasticity
- arxiv url: http://arxiv.org/abs/2504.06796v1
- Date: Wed, 09 Apr 2025 11:39:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:33:19.278104
- Title: Learning in Spiking Neural Networks with a Calcium-based Hebbian Rule for Spike-timing-dependent Plasticity
- Title(参考訳): カルシウムによるスパイク刺激依存塑性のヘビアン則によるスパイクニューラルネットワークの学習
- Authors: Willian Soares Girão, Nicoletta Risi, Elisabetta Chicca,
- Abstract要約: 我々は, シナプス修飾をカルシウムトレースの関数としてモデル化し, 神経活動を追跡するヘビーンの局所学習規則を提案する。
本モデルでは,ニューロンの平均発火速度を変化させることなく,ネットワークの学習速度を調節する方法について検討した。
- 参考スコア(独自算出の注目度): 0.46085106405479537
- License:
- Abstract: Understanding how biological neural networks are shaped via local plasticity mechanisms can lead to energy-efficient and self-adaptive information processing systems, which promises to mitigate some of the current roadblocks in edge computing systems. While biology makes use of spikes to seamless use both spike timing and mean firing rate to modulate synaptic strength, most models focus on one of the two. In this work, we present a Hebbian local learning rule that models synaptic modification as a function of calcium traces tracking neuronal activity. We show how the rule reproduces results from spike time and spike rate protocols from neuroscientific studies. Moreover, we use the model to train spiking neural networks on MNIST digit recognition to show and explain what sort of mechanisms are needed to learn real-world patterns. We show how our model is sensitive to correlated spiking activity and how this enables it to modulate the learning rate of the network without altering the mean firing rate of the neurons nor the hyparameters of the learning rule. To the best of our knowledge, this is the first work that showcases how spike timing and rate can be complementary in their role of shaping the connectivity of spiking neural networks.
- Abstract(参考訳): 生物学的ニューラルネットワークが、局所的な可塑性機構によってどのように形成されるかを理解することで、エネルギー効率が高く、自己適応的な情報処理システムが実現し、エッジコンピューティングシステムにおける現在の障害を緩和する。
生物学ではスパイクのタイミングと平均発射速度の両方をシームレスに使用してシナプス強度を調節するが、ほとんどのモデルは2つのうちの1つにフォーカスする。
本研究では, シナプス修飾をカルシウムトレースの関数としてモデル化し, 神経活動を追跡するヘビーンの局所学習規則を提案する。
このルールが神経科学研究のスパイク時間とスパイクレートプロトコルからどのように結果を再現するかを示す。
さらに、本モデルを用いて、MNISTデジタル認識におけるスパイクニューラルネットワークのトレーニングを行い、現実世界のパターンを学習するのにどのようなメカニズムが必要かを示し、説明する。
本研究は,ニューロンの平均発火速度や学習規則のパラメータを変化させることなく,ネットワークの学習速度を調節する方法について述べる。
私たちの知る限りでは、スパイクタイミングとレートが、スパイクニューラルネットワークの接続性を形作る役割を補完する最初の作品です。
関連論文リスト
- Unsupervised representation learning with Hebbian synaptic and structural plasticity in brain-like feedforward neural networks [0.0]
教師なし表現学習が可能な脳様ニューラルネットワークモデルを導入,評価する。
このモデルは、一般的な機械学習ベンチマークのさまざまなセットでテストされた。
論文 参考訳(メタデータ) (2024-06-07T08:32:30Z) - Temporal Conditioning Spiking Latent Variable Models of the Neural
Response to Natural Visual Scenes [29.592870472342337]
本研究は, 時間条件付潜時変動モデル(TeCoS-LVM)を提示し, 自然視覚刺激に対する神経応答をシミュレートする。
スパイクニューロンを使用して、記録された列車と直接一致するスパイク出力を生成します。
我々は,TeCoS-LVMモデルにより,よりリアルなスパイク活動が生成され,強力な代替手段よりも正確なスパイク統計に適合することを示す。
論文 参考訳(メタデータ) (2023-06-21T06:30:18Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Unsupervised Spiking Neural Network Model of Prefrontal Cortex to study
Task Switching with Synaptic deficiency [0.0]
スパイキングニューラルネットワーク(SNN)を用いた前頭前皮質(PFC)の計算モデルを構築した。
本研究では,SNNが生物学的に妥当な値に近いパラメータを持ち,教師なしのスパイクタイミング依存塑性(STDP)学習規則を用いてモデルを訓練する。
論文 参考訳(メタデータ) (2023-05-23T05:59:54Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - A Fully Memristive Spiking Neural Network with Unsupervised Learning [2.8971214387667494]
このシステムは、神経系とシナプス系の両方のダイナミクスが、メムリスタを用いて実現可能であることを完全に理解している。
提案したMSNNは, 共振器間の電圧波形変化から, 共振器の累積重変化を用いてSTDP学習を実装した。
論文 参考訳(メタデータ) (2022-03-02T21:16:46Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Training Deep Spiking Auto-encoders without Bursting or Dying Neurons
through Regularization [9.34612743192798]
スパイクニューラルネットワークは、計算神経科学における次世代の脳モデルに対する有望なアプローチである。
膜電位に基づくバックプロパゲーションを用いたエンドツーエンド学習を、スパイクする畳み込みオートエンコーダに適用する。
膜電位とスパイク出力に正規化を適用することで、死と破裂の両方のニューロンをうまく回避できることを示す。
論文 参考訳(メタデータ) (2021-09-22T21:27:40Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - Towards Efficient Processing and Learning with Spikes: New Approaches
for Multi-Spike Learning [59.249322621035056]
各種タスクにおける他のベースラインよりも優れた性能を示すための2つの新しいマルチスパイク学習ルールを提案する。
特徴検出タスクでは、教師なしSTDPの能力と、その制限を提示する能力を再検討する。
提案した学習ルールは,特定の制約を適用せずに,幅広い条件で確実にタスクを解くことができる。
論文 参考訳(メタデータ) (2020-05-02T06:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。