論文の概要: NeuralMatrix: Compute the Entire Neural Networks with Linear Matrix
Operations for Efficient Inference
- arxiv url: http://arxiv.org/abs/2305.14405v2
- Date: Fri, 6 Oct 2023 13:28:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 12:12:42.828032
- Title: NeuralMatrix: Compute the Entire Neural Networks with Linear Matrix
Operations for Efficient Inference
- Title(参考訳): neuralmatrix: 効率的な推論のための線形行列演算によるニューラルネットワーク全体の計算
- Authors: Ruiqi Sun, Jie Zhao, Xin He, Yiran Li, An Zou
- Abstract要約: 我々は、ディープニューラルネットワーク(DNN)モデル全体の計算を線形行列演算に変換するフレームワークであるNeuralMatrixを紹介する。
個々のネットワークモデルで要求される様々な計算タイプによって引き起こされる制約を克服することにより、このアプローチは両方の一般性を提供する。
- 参考スコア(独自算出の注目度): 22.03105482791844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The inherent diversity of computation types within individual deep neural
network (DNN) models necessitates a corresponding variety of computation units
within hardware processors, leading to a significant constraint on computation
efficiency during neural network execution. In this study, we introduce
NeuralMatrix, a framework that transforms the computation of entire DNNs into
linear matrix operations, effectively enabling their execution with one
general-purpose matrix multiplication (GEMM) accelerator. By surmounting the
constraints posed by the diverse computation types required by individual
network models, this approach provides both generality, allowing a wide range
of DNN models to be executed using a single GEMM accelerator and
application-specific acceleration levels without extra special function units,
which are validated through main stream DNNs and their variant models.
- Abstract(参考訳): 個々のディープニューラルネットワーク(DNN)モデルにおける計算タイプの固有の多様性は、ハードウェアプロセッサ内の対応する様々な計算ユニットを必要とするため、ニューラルネットワーク実行時の計算効率に大きな制約が生じる。
本研究では,DNN全体の計算を線形行列演算に変換するフレームワークであるNeuralMatrixを紹介する。
個別のネットワークモデルで要求される多種多様な計算形式による制約を克服することにより、単一のGEMMアクセラレーターを用いて広範囲のDNNモデルを実行し、特別な機能ユニットを使わずにアプリケーション固有のアクセラレーションレベルを実行し、メインストリームのDNNとその変種モデルを通して検証することができる。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Training Integer-Only Deep Recurrent Neural Networks [3.1829446824051195]
精度の高い整数専用リカレントニューラルネットワーク(iRNN)を得るための量子化学習法を提案する。
本手法は, 層正規化, 注意, アクティベーション関数の適応的片方向線形(PWL)近似をサポートする。
提案手法により,RNNベースの言語モデルでエッジデバイス上で実行可能である。
論文 参考訳(メタデータ) (2022-12-22T15:22:36Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - iRNN: Integer-only Recurrent Neural Network [0.8766022970635899]
精度の高い整数専用リカレントニューラルネットワーク(iRNN)を得るための量子化学習法を提案する。
当社のiRNNは、フル精度のものと同等のパフォーマンスを維持しており、スマートフォンへの展開により、ランタイムのパフォーマンスが2倍、モデルサイズが4倍に向上しています。
論文 参考訳(メタデータ) (2021-09-20T20:17:40Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - An Alternative Practice of Tropical Convolution to Traditional
Convolutional Neural Networks [0.5837881923712392]
トロピカル畳み込みニューラルネットワーク (TCNNs) と呼ばれる新しいタイプのCNNを提案する。
TCNNは、従来の畳み込み層における乗算と加算をそれぞれ加算とmin/max演算に置き換える熱帯畳み込みの上に構築されている。
我々は,MNIST と CIFAR10 の画像データセットにおいて,通常の畳み込み層よりも表現力が高いことを示す。
論文 参考訳(メタデータ) (2021-03-03T00:13:30Z) - Binary Graph Neural Networks [69.51765073772226]
グラフニューラルネットワーク(gnns)は、不規則データに対する表現学習のための強力で柔軟なフレームワークとして登場した。
本稿では,グラフニューラルネットワークのバイナライゼーションのための異なる戦略を提示し,評価する。
モデルの慎重な設計とトレーニングプロセスの制御によって、バイナリグラフニューラルネットワークは、挑戦的なベンチマークの精度において、適度なコストでトレーニングできることを示しています。
論文 参考訳(メタデータ) (2020-12-31T18:48:58Z) - ShiftAddNet: A Hardware-Inspired Deep Network [87.18216601210763]
ShiftAddNetはエネルギー効率のよい乗算レスディープニューラルネットワークである。
エネルギー効率のよい推論とトレーニングの両方につながるが、表現能力は損なわれない。
ShiftAddNetは、DNNのトレーニングと推論において、80%以上のハードウェア量子化されたエネルギーコストを積極的に削減し、同等またはより良い精度を提供する。
論文 参考訳(メタデータ) (2020-10-24T05:09:14Z) - Block-term Tensor Neural Networks [29.442026567710435]
ブロック終端テンソル層(BT層)は,CNNやRNNなどのニューラルネットワークモデルに容易に適用可能であることを示す。
CNNとRNNのBT層は、元のDNNの表現力を維持したり改善したりしながら、パラメータ数に対して非常に大きな圧縮比を達成することができる。
論文 参考訳(メタデータ) (2020-10-10T09:58:43Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。