論文の概要: Exploring Semantic Variations in GAN Latent Spaces via Matrix
Factorization
- arxiv url: http://arxiv.org/abs/2305.14551v1
- Date: Tue, 23 May 2023 22:23:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 21:38:07.670628
- Title: Exploring Semantic Variations in GAN Latent Spaces via Matrix
Factorization
- Title(参考訳): 行列分解によるGAN潜時空間のセマンティック変動の探索
- Authors: Andrey Palaev and Rustam A. Lukmanov and Adil Khan
- Abstract要約: そこで本研究では,PCAに基づく最先端手法であるGANSpaceで学習した画像操作について検討する。
生成した画像の品質は、GANのサイズに敏感であるが、その複雑さにかかわらず、基本的な制御方向は、潜在空間で観察できる。
- 参考スコア(独自算出の注目度): 2.578242050187029
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Controlled data generation with GANs is desirable but challenging due to the
nonlinearity and high dimensionality of their latent spaces. In this work, we
explore image manipulations learned by GANSpace, a state-of-the-art method
based on PCA. Through quantitative and qualitative assessments we show: (a)
GANSpace produces a wide range of high-quality image manipulations, but they
can be highly entangled, limiting potential use cases; (b) Replacing PCA with
ICA improves the quality and disentanglement of manipulations; (c) The quality
of the generated images can be sensitive to the size of GANs, but regardless of
their complexity, fundamental controlling directions can be observed in their
latent spaces.
- Abstract(参考訳): ganによる制御されたデータ生成は望ましいが、潜在空間の非線形性と高次元のため困難である。
そこで本研究では,PCAに基づく最先端手法であるGANSpaceで学習した画像操作について検討する。
定量的で質的な評価を通して
(a) GANSpaceは、幅広い高品質の画像操作を生成するが、高い絡み合いがあり、潜在的なユースケースを制限することができる。
b) pca をica に置き換えることにより,操作の質及び絡み合いが向上する。
(c) 生成した画像の画質はGANのサイズに敏感であるが, その複雑さによらず, 潜在空間において基本的な制御方向を観察することができる。
関連論文リスト
- SphereDiffusion: Spherical Geometry-Aware Distortion Resilient Diffusion Model [63.685132323224124]
制御可能な球状パノラマ画像生成は、様々な領域でかなりの応用可能性を持っている。
本稿では,これらの課題に対処するために,SphereDiffusionの新しいフレームワークを提案する。
Structured3Dデータセットの実験では、SphereDiffusionは制御可能な球面画像生成の品質を大幅に改善し、平均して約35%のFIDを相対的に削減している。
論文 参考訳(メタデータ) (2024-03-15T06:26:46Z) - Locality-preserving Directions for Interpreting the Latent Space of
Satellite Image GANs [20.010911311234718]
本稿では,ウェーブレットをベースとしたGAN(Generative Adversarial Networks)の潜伏空間を解釈する局所性認識手法を提案する。
局所性を保存することに集中して,提案手法は事前学習したGANの重み空間を分解し,解釈可能な方向を復元することができる。
論文 参考訳(メタデータ) (2023-09-26T12:29:36Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
手法は、Hermite-Gaussianモードとその重ね合わせのオーバーコンプリートベースで、画像平面内のフィールドの空間モード成分を測定することで構成される。
ディープニューラルネットワークは、これらの測定からオブジェクトを再構築するために使用される。
論文 参考訳(メタデータ) (2023-04-19T15:53:09Z) - Exploring Gradient-based Multi-directional Controls in GANs [19.950198707910587]
本稿では, 非線形制御の発見手法を提案する。
提案手法は,多方向・多方向特性の多種多様な属性に対してきめ細かな制御が可能であり,現状の手法よりもはるかに優れた非絡み合いを実現する能力を示す。
論文 参考訳(メタデータ) (2022-09-01T19:10:26Z) - High-resolution Face Swapping via Latent Semantics Disentanglement [50.23624681222619]
本稿では,事前学習したGANモデルの事前知識を用いた,新しい高分解能幻覚顔交換法を提案する。
我々は、ジェネレータの進行的な性質を利用して、潜在意味論を明示的に解き放つ。
我々は,2時間制約を潜時空間と画像空間に課すことにより,映像面スワップに拡張する。
論文 参考訳(メタデータ) (2022-03-30T00:33:08Z) - Incorporating Texture Information into Dimensionality Reduction for
High-Dimensional Images [65.74185962364211]
距離ベース次元削減手法に周辺情報を組み込む手法を提案する。
画像パッチを比較する異なる手法の分類に基づいて,様々なアプローチを探索する。
論文 参考訳(メタデータ) (2022-02-18T13:17:43Z) - Latent Transformations via NeuralODEs for GAN-based Image Editing [25.272389610447856]
トレーニング可能なNeural ODEのフローとして実現された非線形潜時符号操作は、多くの実用的な非顔画像領域にとって有益であることを示す。
特に、既知の属性を持つ多数のデータセットを調査し、ある属性操作が線形シフトのみで取得することが困難であることを実証する。
論文 参考訳(メタデータ) (2021-11-29T18:59:54Z) - Low-Rank Subspaces in GANs [101.48350547067628]
この研究は、GAN生成をより正確に制御できる低ランクな部分空間を導入している。
LowRankGAN は属性多様体の低次元表現を見つけることができる。
さまざまなデータセットでトレーニングされた最先端のGANモデル(StyleGAN2やBigGANなど)の実験は、私たちのLowRankGANの有効性を示しています。
論文 参考訳(メタデータ) (2021-06-08T16:16:32Z) - The Geometry of Deep Generative Image Models and its Applications [0.0]
generative adversarial networks (gans) は、実世界のデータセットの統計パターンをモデル化する強力な教師なし手法として登場した。
これらのネットワークは、潜在空間内のランダムな入力を学習データを表す新しいサンプルにマップするように訓練される。
潜在空間の構造は、その高い寸法性と発電機の非線形性のために内挿しが困難である。
論文 参考訳(メタデータ) (2021-01-15T07:57:33Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。