論文の概要: Voices of Her: Analyzing Gender Differences in the AI Publication World
- arxiv url: http://arxiv.org/abs/2305.14597v1
- Date: Wed, 24 May 2023 00:40:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 20:57:25.911834
- Title: Voices of Her: Analyzing Gender Differences in the AI Publication World
- Title(参考訳): 彼女の声:ai出版世界の性差の分析
- Authors: Yiwen Ding, Jiarui Liu, Zhiheng Lyu, Kun Zhang, Bernhard Schoelkopf,
Zhijing Jin, Rada Mihalcea
- Abstract要約: 我々は、AI分野における78K研究者のAI Scholarデータセットを用いて、いくつかの性別差を同定する。
女性第一著者の論文は、より長い文章、よりポジティブな感情の言葉、よりキャッチーなタイトルなど、異なる言語スタイルを示している。
私たちの分析は、私たちのAIコミュニティにおける現在の人口統計トレンドの窓口を提供し、将来、より多くの男女平等と多様性を奨励します。
- 参考スコア(独自算出の注目度): 26.702520904075044
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While several previous studies have analyzed gender bias in research, we are
still missing a comprehensive analysis of gender differences in the AI
community, covering diverse topics and different development trends. Using the
AI Scholar dataset of 78K researchers in the field of AI, we identify several
gender differences: (1) Although female researchers tend to have fewer overall
citations than males, this citation difference does not hold for all
academic-age groups; (2) There exist large gender homophily in co-authorship on
AI papers; (3) Female first-authored papers show distinct linguistic styles,
such as longer text, more positive emotion words, and more catchy titles than
male first-authored papers. Our analysis provides a window into the current
demographic trends in our AI community, and encourages more gender equality and
diversity in the future. Our code and data are at
https://github.com/causalNLP/ai-scholar-gender.
- Abstract(参考訳): これまでのいくつかの研究では、研究における性別バイアスを分析してきたが、AIコミュニティにおける男女差の包括的な分析はいまだに欠けている。
ai分野の78k人の研究者のデータセットを用いて、(1)女性研究者は男性よりも全体的な引用が少ない傾向がありますが、この引用の違いはすべての学齢層には当てはまらない、(2)ai論文の共著者には男女差が大きい、(3)女性の共著者論文は、長文、ポジティブな感情語、男性の共著者論文よりもキャッチーなタイトルといった、異なる言語的スタイルを示している、などを特定する。
私たちの分析は、aiコミュニティにおける現在の人口動態の窓口を提供し、将来、より多くの男女平等と多様性を奨励します。
コードとデータはhttps://github.com/causalNLP/ai-scholar-gender.comにある。
関連論文リスト
- Building Bridges: A Dataset for Evaluating Gender-Fair Machine Translation into German [17.924716793621627]
英独機械翻訳(MT)におけるジェンダーフェア言語の研究
2つの商用システムと6つのニューラルMTモデルを含む最初のベンチマーク研究を行う。
以上の結果から,ほとんどのシステムでは男性型が主流であり,性別ニュートラル変種は稀である。
論文 参考訳(メタデータ) (2024-06-10T09:39:19Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - "I'm fully who I am": Towards Centering Transgender and Non-Binary
Voices to Measure Biases in Open Language Generation [69.25368160338043]
トランスジェンダーとノンバイナリ(TGNB)の個人は、日常生活から差別や排除を不当に経験している。
オープン・ランゲージ・ジェネレーションにおいて,経験豊富なTGNB人物の疎外化を取り巻く社会的現実がいかに貢献し,持続するかを評価する。
我々はTGNB指向のコミュニティからキュレートされたテンプレートベースの実世界のテキストのデータセットであるTANGOを紹介する。
論文 参考訳(メタデータ) (2023-05-17T04:21:45Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
本研究では,事前学習したニューラルジェネレーションモデルにおける性別バイアスの程度に,高齢者がどのような影響を及ぼすかを検討する。
以上の結果から, GPT-2は, 両領域において, 女性を中年, 男性を中年として考えることにより, 偏見を増幅することが示された。
以上の結果から, GPT-2を用いて構築したNLPアプリケーションは, プロの能力において女性に害を与える可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:05:02Z) - Theories of "Gender" in NLP Bias Research [0.0]
NLPにおけるジェンダーバイアスに関する200近い記事を調査した。
記事の大多数は、性別に関する理論を明示していない。
多くの人は、トランス、ノンバイナリ、インターセックスの人々の存在と経験を無視した方法で、性の特徴、社会的性別、言語性について説明している。
論文 参考訳(メタデータ) (2022-05-05T09:20:53Z) - Investigating writing style as a contributor to gender gaps in science and technology [0.0]
文章のスタイルは性別によって大きく異なり、女性はより関連性のある特徴を用いている。
より関連性の高い論文や特許も女性によって引用される傾向にある。
以上の結果から, 科学的テキストは人格を欠くものではないことが示唆され, 評価のバイアスに寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2022-04-28T22:33:36Z) - A Survey on Gender Bias in Natural Language Processing [22.91475787277623]
自然言語処理における性別バイアスに関する304論文について調査する。
ジェンダーバイアスの検出と緩和に対するコントラストアプローチの比較を行った。
性別偏見の研究は、4つの中核的な限界に悩まされている。
論文 参考訳(メタデータ) (2021-12-28T14:54:18Z) - Gender bias in magazines oriented to men and women: a computational
approach [58.720142291102135]
女性指向の雑誌の内容と男性指向の雑誌の内容を比較する。
トピック・モデリングの手法により、雑誌で議論されている主要なテーマを特定し、これらのトピックの存在が時間とともに雑誌間でどの程度異なるかを定量化する。
以上の結果から,セクシュアオブジェクトとしての家族,ビジネス,女性の出現頻度は,時間とともに消失する傾向にあることが示唆された。
論文 参考訳(メタデータ) (2020-11-24T14:02:49Z) - Gender Stereotype Reinforcement: Measuring the Gender Bias Conveyed by
Ranking Algorithms [68.85295025020942]
本稿では,性別ステレオタイプをサポートする検索エンジンの傾向を定量化するジェンダーステレオタイプ強化(GSR)尺度を提案する。
GSRは、表現上の害を定量化できる情報検索のための、最初の特別に調整された尺度である。
論文 参考訳(メタデータ) (2020-09-02T20:45:04Z) - Gender Gap in Natural Language Processing Research: Disparities in
Authorship and Citations [31.87319293259599]
最初の著者の約29%が女性であり、最後の著者の約25%が女性である。
平均的に、女性ファースト作家は、経験と研究領域を制御している場合でも、男性ファースト作家より少ない引用がなされている。
論文 参考訳(メタデータ) (2020-05-03T01:31:12Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。