論文の概要: Masked Bayesian Neural Networks : Theoretical Guarantee and its
Posterior Inference
- arxiv url: http://arxiv.org/abs/2305.14765v1
- Date: Wed, 24 May 2023 06:16:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 19:10:49.437386
- Title: Masked Bayesian Neural Networks : Theoretical Guarantee and its
Posterior Inference
- Title(参考訳): Masked Bayesian Neural Networks : 理論的保証とその後部推論
- Authors: Insung Kong, Dongyoon Yang, Jongjin Lee, Ilsang Ohn, Gyuseung Baek,
Yongdai Kim
- Abstract要約: 本稿では,理論特性が良好で,計算可能な新しいノードスパースBNNモデルを提案する。
我々は、真のモデルに対する後部濃度速度が、真のモデルの滑らかさに適応する最小限の最適値に近いことを証明した。
さらに,ノードスパースBNNモデルのベイズ推定を現実的に実現可能な新しいMCMCアルゴリズムを開発した。
- 参考スコア(独自算出の注目度): 1.2722697496405464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian approaches for learning deep neural networks (BNN) have been
received much attention and successfully applied to various applications.
Particularly, BNNs have the merit of having better generalization ability as
well as better uncertainty quantification. For the success of BNN, search an
appropriate architecture of the neural networks is an important task, and
various algorithms to find good sparse neural networks have been proposed. In
this paper, we propose a new node-sparse BNN model which has good theoretical
properties and is computationally feasible. We prove that the posterior
concentration rate to the true model is near minimax optimal and adaptive to
the smoothness of the true model. In particular the adaptiveness is the first
of its kind for node-sparse BNNs. In addition, we develop a novel MCMC
algorithm which makes the Bayesian inference of the node-sparse BNN model
feasible in practice.
- Abstract(参考訳): ディープニューラルネットワーク(BNN)を学ぶためのベイズ的アプローチは、多くの注目を集め、様々な応用に成功している。
特に、BNNは、より良い一般化能力とより良い不確実性定量化を持つというメリットがある。
BNNの成功のためには、ニューラルネットワークの適切なアーキテクチャを探索することが重要な課題であり、優れたスパースニューラルネットワークを見つけるための様々なアルゴリズムが提案されている。
本稿では,理論特性が良好で,計算可能な新しいノードスパースBNNモデルを提案する。
実モデルに対する後方濃度速度はミニマックスの最適に近いことが証明され、実モデルの滑らかさに適応する。
特に適応性はノードスパースBNNにとって最初のものである。
さらに,ノードスパースBNNモデルのベイズ推定を現実的に実現可能な新しいMCMCアルゴリズムを開発した。
関連論文リスト
- NAS-BNN: Neural Architecture Search for Binary Neural Networks [55.058512316210056]
我々は、NAS-BNNと呼ばれる二元ニューラルネットワークのための新しいニューラルネットワーク探索手法を提案する。
我々の発見したバイナリモデルファミリーは、20Mから2Mまでの幅広い操作(OP)において、以前のBNNよりも優れていた。
さらに,対象検出タスクにおける探索されたBNNの転送可能性を検証するとともに,探索されたBNNを用いたバイナリ検出器は,MSデータセット上で31.6% mAP,370万 OPsなどの新たな最先端結果を得る。
論文 参考訳(メタデータ) (2024-08-28T02:17:58Z) - Bayesian Neural Networks with Domain Knowledge Priors [52.80929437592308]
ドメイン知識の一般的な形式をBNNに組み込むためのフレームワークを提案する。
提案したドメイン知識を用いたBNNは,標準知識のBNNよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-20T22:34:53Z) - Make Me a BNN: A Simple Strategy for Estimating Bayesian Uncertainty
from Pre-trained Models [40.38541033389344]
ディープニューラルネットワーク(Deep Neural Networks, DNN)は、様々なコンピュータビジョンタスクのための強力なツールであるが、信頼性の高い不確実性定量化に苦慮することが多い。
本稿では、DNNをBNNにシームレスに変換するシンプルでスケーラブルな戦略であるAdaptable Bayesian Neural Network (ABNN)を紹介する。
画像分類とセマンティックセグメンテーションタスクのための複数のデータセットにわたる広範囲な実験を行い、ABNNが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-12-23T16:39:24Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNは、実数値重みとスケールファクターの内在的双線型関係を無視している。
私たちの仕事は、双線形の観点からBNNを最適化する最初の試みです。
我々は、様々なモデルやデータセット上で最先端のBNNに対して印象的な性能を示す頑健なRBONNを得る。
論文 参考訳(メタデータ) (2022-09-04T06:45:33Z) - Masked Bayesian Neural Networks : Computation and Optimality [1.3649494534428745]
そこで本稿では, 適切な複雑性を伴って, 優れた深層ニューラルネットワークを探索する, スパースベイズニューラルネットワーク(BNN)を提案する。
我々は各ノードのマスキング変数を用いて、後続分布に応じていくつかのノードをオフにし、ノードワイズDNNを生成する。
いくつかのベンチマークデータセットを解析することにより,提案したBNNが既存手法と比較してよく動作することを示す。
論文 参考訳(メタデータ) (2022-06-02T02:59:55Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - A Mixed Integer Programming Approach for Verifying Properties of
Binarized Neural Networks [44.44006029119672]
BNN検証のための混合整数計画法を提案する。
我々は,MNISTデータセットと航空機衝突回避制御器を用いて訓練したBNNの特性を検証することによって,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2022-03-11T01:11:29Z) - Spatial-Temporal-Fusion BNN: Variational Bayesian Feature Layer [77.78479877473899]
我々は,BNNを大規模モデルに効率的にスケールするための時空間BNNを設計する。
バニラBNNと比較して,本手法はトレーニング時間とパラメータ数を著しく削減し,BNNのスケールアップに有効である。
論文 参考訳(メタデータ) (2021-12-12T17:13:14Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。