論文の概要: Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners
- arxiv url: http://arxiv.org/abs/2305.14825v2
- Date: Thu, 8 Jun 2023 16:38:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 18:52:18.178023
- Title: Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners
- Title(参考訳): 大規模言語モデルはシンボリック推論ではなく文脈内意味推論である
- Authors: Xiaojuan Tang, Zilong Zheng, Jiaqi Li, Fanxu Meng, Song-Chun Zhu,
Yitao Liang, Muhan Zhang
- Abstract要約: 大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
- 参考スコア(独自算出の注目度): 75.85554779782048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergent few-shot reasoning capabilities of Large Language Models (LLMs)
have excited the natural language and machine learning community over recent
years. Despite of numerous successful applications, the underlying mechanism of
such in-context capabilities still remains unclear. In this work, we
hypothesize that the learned \textit{semantics} of language tokens do the most
heavy lifting during the reasoning process. Different from human's symbolic
reasoning process, the semantic representations of LLMs could create strong
connections among tokens, thus composing a superficial logical chain. To test
our hypothesis, we decouple semantics from the language reasoning process and
evaluate three kinds of reasoning abilities, i.e., deduction, induction and
abduction. Our findings reveal that semantics play a vital role in LLMs'
in-context reasoning -- LLMs perform significantly better when semantics are
consistent with commonsense but struggle to solve symbolic or
counter-commonsense reasoning tasks by leveraging in-context new knowledge. The
surprising observations question whether modern LLMs have mastered the
inductive, deductive and abductive reasoning abilities as in human
intelligence, and motivate research on unveiling the magic existing within the
black-box LLMs. On the whole, our analysis provides a novel perspective on the
role of semantics in developing and evaluating language models' reasoning
abilities. Code is available at {\url{https://github.com/XiaojuanTang/ICSR}}.
- Abstract(参考訳): 大規模言語モデル(llm)の創発的な少数ショット推論能力は、近年、自然言語と機械学習コミュニティを刺激している。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンの「textit{semantics}」が推論過程において最も重い処理を行うと仮定する。
人間の象徴的推論プロセスと異なり、llmの意味的表現はトークン間の強いつながりを生み出し、表面的な論理連鎖を構成する。
本仮説を検証するために,言語推論から意味論を分離し,推論能力,推論,帰納,誘拐の3種類の推論能力を評価する。
本研究は,LLMにおける意味論が意味論的推論において重要な役割を担っていることを明らかにする。
この驚くべき観察は、現代のLLMが人間の知能のように誘導的、誘因的、誘因的推論能力を習得したかどうかを疑問視し、ブラックボックスのLLMに存在する魔法を明らかにするための研究を動機付けている。
本分析は,言語モデルの推論能力の発達と評価における意味論の役割について,新たな視点を提供する。
コードは {\url{https://github.com/XiaojuanTang/ICSR}}で入手できる。
関連論文リスト
- Inductive or Deductive? Rethinking the Fundamental Reasoning Abilities of LLMs [99.76347807139615]
推論には2つの典型型がある: 帰納的推論(deductive reasoning)と帰納的推論(inductive reasoning)。
大規模言語モデル(LLM)の推論能力に関する広範な研究にもかかわらず、ほとんどの研究は帰納的推論と帰納的推論を厳密に区別することができなかった。
LLM推論では、帰納的または帰納的推論という、より大きな課題を引き起こします。
論文 参考訳(メタデータ) (2024-07-31T18:47:11Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
本稿では,LSMによるプロンプトベース推論の急速に進展する分野について概説する。
我々の分類学は、多段階推論の生成、評価、制御の異なる方法を特定します。
我々は, 自己改善, 自己回帰, 推論過程のいくつかのメタ能力が, プロンプトの司法的利用によって可能であることを発見した。
論文 参考訳(メタデータ) (2024-07-16T08:49:35Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - Should We Fear Large Language Models? A Structural Analysis of the Human
Reasoning System for Elucidating LLM Capabilities and Risks Through the Lens
of Heidegger's Philosophy [0.0]
本研究では,Large Language Models(LLM)の能力とリスクについて検討する。
LLM内の単語関係の統計的パターンと、Martin Heidegger氏の概念である"ready-to-hand"と"present-at-hand"の間には、革新的な並列性がある。
以上の結果から, LLMには直接的説明推論と擬似論理推論の能力があるが, 真理的推論に乏しく, 創造的推論能力がないことが明らかとなった。
論文 参考訳(メタデータ) (2024-03-05T19:40:53Z) - Do Large Language Models Understand Logic or Just Mimick Context? [14.081178100662163]
本稿では,2つの論理的推論データセット上での大規模言語モデル(LLM)の推論能力について検討する。
LLMは論理規則を真に理解していないことが判明した。むしろ、文脈内学習は、これらのモデルが正しい解に到達する可能性を高めている。
論文 参考訳(メタデータ) (2024-02-19T12:12:35Z) - Igniting Language Intelligence: The Hitchhiker's Guide From
Chain-of-Thought Reasoning to Language Agents [80.5213198675411]
大規模言語モデル(LLM)は言語知能の分野を劇的に拡張した。
LLMは興味をそそるチェーン・オブ・シークレット(CoT)推論技術を活用し、答えを導き出す途中の中間ステップを定式化しなければならない。
最近の研究は、自律言語エージェントの開発を促進するためにCoT推論手法を拡張している。
論文 参考訳(メタデータ) (2023-11-20T14:30:55Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - ChatABL: Abductive Learning via Natural Language Interaction with
ChatGPT [72.83383437501577]
大規模言語モデル(LLM)は、最近数学的な能力において大きな可能性を証明している。
LLMは現在、認識、言語理解、推論能力のブリッジングに困難を抱えている。
本稿では, LLMを帰納学習フレームワークに統合する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-04-21T16:23:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。