論文の概要: Chain-of-Questions Training with Latent Answers for Robust Multistep
Question Answering
- arxiv url: http://arxiv.org/abs/2305.14901v3
- Date: Sat, 23 Dec 2023 06:05:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 22:41:56.177034
- Title: Chain-of-Questions Training with Latent Answers for Robust Multistep
Question Answering
- Title(参考訳): 頑健な多段階質問応答のための潜在回答を用いた問合せ連鎖訓練
- Authors: Wang Zhu, Jesse Thomason, Robin Jia
- Abstract要約: Chain-of-Questionsは、モデルをトレーニングしてサブクエストを生成し、サブアンサーを一度に生成するフレームワークである。
我々はサブアンサーを潜伏変数として扱い、Hard-EMとMAPOの動的混合を用いてそれらを最適化する。
- 参考スコア(独自算出の注目度): 30.724851019764596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We train a language model (LM) to robustly answer multistep questions by
generating and answering sub-questions. We propose Chain-of-Questions, a
framework that trains a model to generate sub-questions and sub-answers one at
a time by leveraging human annotated question decomposition meaning
representation (QDMR). The key technical challenge is that QDMR only contains
sub-questions but not answers to those sub-questions, so we treat sub-answers
as latent variables and optimize them using a novel dynamic mixture of Hard-EM
and MAPO. Chain-of-Questions greatly outperforms strong neuro-symbolic methods
by 9.0 F1 on DROP contrast set, and outperforms GPT-3.5 by 24.3 F1 on HOTPOTQA
adversarial set, thus demonstrating the effectiveness and robustness of our
framework.
- Abstract(参考訳): 我々は言語モデル(LM)を訓練し、サブクエストの生成と回答によって多段階の質問に頑健に答える。
本稿では,人間に注釈付き質問分解意味表現(qdmr)を活用し,質問と回答を同時生成するモデルを学習する枠組みであるchain-of-questionsを提案する。
重要な技術的課題は、QDMRはサブクエストのみを含むが、これらのサブクエストに応答しないため、サブアンサーを潜在変数として扱い、Hard-EMとMAPOの新しい動的混合を用いてそれらを最適化する。
DROPコントラストセットでは9.0F1,HOTPOTQA対向セットでは24.3F1でGPT-3.5より優れた9.0F1,強いニューロシンボリックメソッドでは高い性能を示し,本フレームワークの有効性とロバスト性を示す。
関連論文リスト
- STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering [8.525847131940031]
マルチホップ質問応答(MHQA)は、複雑な質問に答えるために複数の通路から情報を検索し統合するモデルを必要とする。
近年のシステムでは、大規模言語モデルのパワーを活用し、証拠検索と推論のプロンプトを統合している。
MHQAの制約付き復号法であるSTOC-TOTを提案する。
論文 参考訳(メタデータ) (2024-07-04T07:17:53Z) - Chain-of-Discussion: A Multi-Model Framework for Complex Evidence-Based Question Answering [55.295699268654545]
本稿では,オープンソースのLarge Language Model間の相乗効果を利用する新しいChain-of-Discussionフレームワークを提案する。
実験の結果,複数のLSM間の議論は回答の質を高める上で重要な役割を担っていることがわかった。
論文 参考訳(メタデータ) (2024-02-26T05:31:34Z) - Answering Questions by Meta-Reasoning over Multiple Chains of Thought [53.55653437903948]
MCR(Multi-Chain Reasoning)は,大規模言語モデルに対して,複数の思考連鎖に対するメタ推論を促す手法である。
MCRは、異なる推論連鎖を調べ、それら間で情報を混合し、説明を生成し、答えを予測する際に最も関係のある事実を選択する。
論文 参考訳(メタデータ) (2023-04-25T17:27:37Z) - Momentum Contrastive Pre-training for Question Answering [54.57078061878619]
MCROSSはモーメントコントラスト学習フレームワークを導入し、クローゼのような解答確率と自然な問合せのサンプルペアを一致させる。
本手法は,教師付きシナリオとゼロショットシナリオの両方において,すべてのベースラインと比較して顕著な改善を実現している。
論文 参考訳(メタデータ) (2022-12-12T08:28:22Z) - Interpretable AMR-Based Question Decomposition for Multi-hop Question
Answering [12.35571328854374]
マルチホップQAのための抽象的意味表現(QDAMR)に基づく質問分解手法を提案する。
マルチホップ質問をより単純なサブクエストに分解し、順番に答える。
HotpotQAの実験結果から,本手法は解釈可能な推論と競合することが示された。
論文 参考訳(メタデータ) (2022-06-16T23:46:33Z) - SRQA: Synthetic Reader for Factoid Question Answering [21.28441702154528]
我々はSRQAと呼ばれる新しいモデルを導入し、これはFactoid Question AnsweringのためのSynthetic Readerを意味する。
このモデルは,多文書シナリオにおける質問応答システムを3つの側面から強化する。
WebQAデータセット上でSRQAを行い、実験により、我々のモデルが最先端のモデルより優れていることを示す。
論文 参考訳(メタデータ) (2020-09-02T13:16:24Z) - Unsupervised Question Decomposition for Question Answering [102.56966847404287]
本論文では, ワンツーNアン教師付きシーケンスシーケンス(ONUS)のアルゴリズムを提案する。
当初,ドメイン外,マルチホップ開発セットのベースラインが強かったため,HotpotQAでは大きなQA改善が見られた。
論文 参考訳(メタデータ) (2020-02-22T19:40:35Z) - Break It Down: A Question Understanding Benchmark [79.41678884521801]
本稿では,質問に対する質問分解表現(QDMR)について紹介する。
QDMRは、質問に答えるために必要な自然言語で表されるステップの順序付きリストを構成する。
83万組の質問と彼らのQDMRを含むBreakデータセットをリリースする。
論文 参考訳(メタデータ) (2020-01-31T11:04:52Z) - DUMA: Reading Comprehension with Transposition Thinking [107.89721765056281]
MRC (Multi-choice Machine Reading) は、解答オプションのセットから正しい解答を決定するためのモデルを必要とする。
新しい Dual Multi-head Co-Attention (DUMA) モデルは、多選択MRC問題を解決する人間の転置思考プロセスにインスパイアされている。
論文 参考訳(メタデータ) (2020-01-26T07:35:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。