論文の概要: STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering
- arxiv url: http://arxiv.org/abs/2407.03687v1
- Date: Thu, 4 Jul 2024 07:17:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 19:02:03.727602
- Title: STOC-TOT: Stochastic Tree-of-Thought with Constrained Decoding for Complex Reasoning in Multi-Hop Question Answering
- Title(参考訳): STOC-TOT:マルチホップ質問応答における複雑な推論のための制約付きデコード付き確率木
- Authors: Zhenyu Bi, Daniel Hajialigol, Zhongkai Sun, Jie Hao, Xuan Wang,
- Abstract要約: マルチホップ質問応答(MHQA)は、複雑な質問に答えるために複数の通路から情報を検索し統合するモデルを必要とする。
近年のシステムでは、大規模言語モデルのパワーを活用し、証拠検索と推論のプロンプトを統合している。
MHQAの制約付き復号法であるSTOC-TOTを提案する。
- 参考スコア(独自算出の注目度): 8.525847131940031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-hop question answering (MHQA) requires a model to retrieve and integrate information from multiple passages to answer a complex question. Recent systems leverage the power of large language models and integrate evidence retrieval with reasoning prompts (e.g., chain-of-thought reasoning) for the MHQA task. However, the complexities in the question types (bridge v.s. comparison questions) and the reasoning types (sequential v.s. parallel reasonings) require more novel and fine-grained prompting methods to enhance the performance of MHQA under the zero-shot setting. In this paper, we propose STOC-TOT, a stochastic tree-of-thought reasoning prompting method with constrained decoding for MHQA and conduct a detailed comparison with other reasoning prompts on different question types and reasoning types. Specifically, we construct a tree-like reasoning structure by prompting the model to break down the original question into smaller sub-questions to form different reasoning paths. In addition, we prompt the model to provide a probability estimation for each reasoning path at each reasoning step. At answer time, we conduct constrained decoding on the model to generate more grounded answers and reduce hallucination. Experiments comparing STOC-TOT with two MHQA datasets and five large language models showed that our framework outperforms other reasoning prompts by a significant margin.
- Abstract(参考訳): マルチホップ質問応答(MHQA)は、複雑な質問に答えるために複数の通路から情報を検索し統合するモデルを必要とする。
近年のシステムは、MHQAタスクの推論プロンプト(例えば、連鎖推論)とエビデンス検索を統合している。
しかし、疑問型(ブリッジ対比較問題)と推論型(シークエンシャル対並列推論)の複雑さは、ゼロショット設定下でのMHQAの性能を高めるために、より斬新できめ細かいプロンプト法を必要とする。
本稿では,MHQAの制約付き復号化手法であるSTOC-TOTを提案する。
具体的には、木のような推論構造を構築し、モデルが元の質問を小さなサブクエストに分解して異なる推論経路を形成するように促す。
さらに,各推論ステップにおいて,各推論パスに対して確率推定を行うように促す。
回答時にはモデル上で制約付き復号を行い,より基礎的な回答を生成し,幻覚を減少させる。
STOC-TOTを2つのMHQAデータセットと5つの大きな言語モデルと比較した実験により、我々のフレームワークは、他の推論プロンプトよりも大きなマージンで優れていることが示された。
関連論文リスト
- GenDec: A robust generative Question-decomposition method for Multi-hop
reasoning [32.12904215053187]
マルチホップQAには、複雑な質問に答えるステップバイステップの推論が含まれる。
マルチホップ質問応答における既存の大規模言語モデル(LLM)推論能力は現在も探索が続けられている。
LLMが正しい結論に達するために望ましい推論連鎖に従うかどうかは不明である。
論文 参考訳(メタデータ) (2024-02-17T02:21:44Z) - Leveraging Structured Information for Explainable Multi-hop Question
Answering and Reasoning [14.219239732584368]
本研究では,マルチホップ質問応答のための抽出された意味構造(グラフ)の構築と活用について検討する。
実験結果と人的評価の結果から、我々のフレームワークはより忠実な推論連鎖を生成し、2つのベンチマークデータセットのQA性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T05:32:39Z) - Getting MoRE out of Mixture of Language Model Reasoning Experts [71.61176122960464]
多様な特殊言語モデルを組み込んだMixture-of-Reasoning-Experts (MoRE) フレームワークを提案する。
実例,マルチホップ,数学的,コモンセンス推論など,さまざまな推論カテゴリに最適化されたプロンプトを備えたバックボーン言語モデルを特化する。
人間の研究では、専門家による予測と回答の選択プロセスが、アノテータがシステムの出力を信頼するタイミングをより正確に調整するのに役立ちます。
論文 参考訳(メタデータ) (2023-05-24T02:00:51Z) - STREET: A Multi-Task Structured Reasoning and Explanation Benchmark [56.555662318619135]
マルチタスクとマルチドメインの自然言語推論と説明ベンチマークを統一的に導入する。
我々は、モデルが質問に答えるだけでなく、ある解の正しさを証明できる中間的な結論を生成するために、問題の前提がどのように使われているかを記述する、段階的に構造化された説明を生成することを期待している。
論文 参考訳(メタデータ) (2023-02-13T22:34:02Z) - Complexity-Based Prompting for Multi-Step Reasoning [72.0057198610614]
大規模言語モデルに対して,多段階推論を行うための課題について検討する。
中心的な疑問は、どの推論例が最も効果的なプロンプトを作るかである。
多段階推論のためのシンプルで効果的な例選択方式である複雑性ベースのプロンプトを提案する。
論文 参考訳(メタデータ) (2022-10-03T05:33:27Z) - Learn to Explain: Multimodal Reasoning via Thought Chains for Science
Question Answering [124.16250115608604]
本稿では,SQA(Science Question Answering)について紹介する。SQA(Science Question Answering)は,21万のマルチモーダルな複数選択質問と多様な科学トピックと,それに対応する講義や説明による回答の注釈からなる新しいベンチマークである。
また,SQAでは,数ショットのGPT-3では1.20%,微調整のUnifiedQAでは3.99%の改善が見られた。
我々の分析は、人間に似た言語モデルは、より少ないデータから学習し、わずか40%のデータで同じパフォーマンスを達成するのに、説明の恩恵を受けることを示している。
論文 参考訳(メタデータ) (2022-09-20T07:04:24Z) - Ask to Understand: Question Generation for Multi-hop Question Answering [11.626390908264872]
マルチホップ質問回答 (Multi-hop Question Answering, QA) は、複数の文書から散乱した手がかりを見つけ、推論することで複雑な質問に答えることを要求する。
質問生成(QG)の観点から,マルチホップQAを補完する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-17T04:02:29Z) - Generative Context Pair Selection for Multi-hop Question Answering [60.74354009152721]
マルチホップ質問応答のための生成コンテキスト選択モデルを提案する。
提案した生成経路選択モデルは,対向保留集合上でのより良い性能(ベースラインより4.9%高い)を有する。
論文 参考訳(メタデータ) (2021-04-18T07:00:48Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
本稿では,既存のモデルで解けるより単純なモデルに分解することで,複雑なタスクを解くための解釈可能なシステムを構築するためのフレームワークを提案する。
我々はこのフレームワークを用いて、ニューラルネットワークのファクトイド単一スパンQAモデルとシンボリック電卓で答えられるサブクエストに分解することで、マルチホップ推論問題に答えられるシステムであるModularQAを構築する。
論文 参考訳(メタデータ) (2020-09-01T23:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。