論文の概要: Tricking LLMs into Disobedience: Formalizing, Analyzing, and Detecting Jailbreaks
- arxiv url: http://arxiv.org/abs/2305.14965v4
- Date: Wed, 27 Mar 2024 04:38:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 11:56:31.521014
- Title: Tricking LLMs into Disobedience: Formalizing, Analyzing, and Detecting Jailbreaks
- Title(参考訳): LLMを不服従させる: ジェイルブレイクの形式化、分析、検出
- Authors: Abhinav Rao, Sachin Vashistha, Atharva Naik, Somak Aditya, Monojit Choudhury,
- Abstract要約: 我々は、既知の(そして可能な)ジェイルブレイクの形式主義と分類法を提案する。
私たちは3700のjailbreakプロンプトにまたがるモデル出力のデータセットを4つのタスクでリリースしています。
- 参考スコア(独自算出の注目度): 12.540530764250812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent explorations with commercial Large Language Models (LLMs) have shown that non-expert users can jailbreak LLMs by simply manipulating their prompts; resulting in degenerate output behavior, privacy and security breaches, offensive outputs, and violations of content regulator policies. Limited studies have been conducted to formalize and analyze these attacks and their mitigations. We bridge this gap by proposing a formalism and a taxonomy of known (and possible) jailbreaks. We survey existing jailbreak methods and their effectiveness on open-source and commercial LLMs (such as GPT-based models, OPT, BLOOM, and FLAN-T5-XXL). We further discuss the challenges of jailbreak detection in terms of their effectiveness against known attacks. For further analysis, we release a dataset of model outputs across 3700 jailbreak prompts over 4 tasks.
- Abstract(参考訳): 商用のLarge Language Models (LLMs) による最近の調査では、非専門家のユーザは単にプロンプトを操作するだけで LLM をジェイルブレイクでき、結果として出力の退行、プライバシとセキュリティの侵害、攻撃的なアウトプット、コンテンツ規制ポリシー違反などが発生する。
これらの攻撃とその緩和を形式化し分析するための限定的な研究が実施されている。
我々は、このギャップを、形式主義と既知の(そして可能な)ジェイルブレイクの分類の提案によって埋める。
本稿では,既存のjailbreak手法とオープンソースおよび商用LCM(GPTベースモデル,OPT,BLOOM,FLAN-T5-XXLなど)の有効性について検討する。
さらに、既知の攻撃に対する効果の観点から、脱獄検知の課題についても論じる。
さらに分析するために、3700のjailbreakプロンプトにまたがるモデル出力のデータセットを4つのタスクでリリースします。
関連論文リスト
- Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction [32.04296423547049]
大規模言語モデル(LLM)は様々な領域に広く適用されている。
LLMを攻撃するための転送可能なブラックボックスジェイルブレイク法であるRewrite to Jailbreak (R2J)アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-16T11:43:39Z) - JBShield: Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation [22.75124155879712]
大規模言語モデル(LLM)は、ジェイルブレイク攻撃に弱いままである。
本稿では,JBShield-DとJBShield-Mの2つの主要コンポーネントからなる総合的ジェイルブレイク防御フレームワークJBShieldを提案する。
論文 参考訳(メタデータ) (2025-02-11T13:50:50Z) - SQL Injection Jailbreak: A Structural Disaster of Large Language Models [71.55108680517422]
LLMの外部特性をターゲットとした新しいジェイルブレイク手法を提案する。
ユーザプロンプトにジェイルブレイク情報を注入することで、SIJは有害なコンテンツを出力するモデルをうまく誘導する。
本稿では,SIJに対抗するために,セルフリマインダーキーと呼ばれる単純な防御手法を提案する。
論文 参考訳(メタデータ) (2024-11-03T13:36:34Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
本稿では,大規模言語モデル(LLM)に対するジェイルブレイク攻撃の構築と評価を容易にする統合フレームワークであるEasyJailbreakを紹介する。
Selector、Mutator、Constraint、Evaluatorの4つのコンポーネントを使ってJailbreak攻撃を構築する。
10の異なるLSMで検証した結果、さまざまなジェイルブレイク攻撃で平均60%の侵入確率で重大な脆弱性が判明した。
論文 参考訳(メタデータ) (2024-03-18T18:39:53Z) - Pandora: Jailbreak GPTs by Retrieval Augmented Generation Poisoning [19.45092401994873]
本研究では,大規模言語モデル(LLM)に対する間接的ジェイルブレイク攻撃について検討する。
本稿では,新たな攻撃ベクトルRetrieval Augmented Generation Poisoningを紹介する。
Pandoraは、即座に操作することでLCMとRAGのシナジーを利用して、予期せぬ応答を生成する。
論文 参考訳(メタデータ) (2024-02-13T12:40:39Z) - Tree of Attacks: Jailbreaking Black-Box LLMs Automatically [34.36053833900958]
本稿では,ジェイルブレイクを自動生成するTAP(Tree of Attacks with Pruning)を提案する。
TAPは、最先端のLDMを80%以上にわたってジェイルブレイクするプロンプトを生成する。
TAPはまた、LlamaGuardのような最先端のガードレールによって保護されたLLMをジェイルブレイクすることができる。
論文 参考訳(メタデータ) (2023-12-04T18:49:23Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - "Do Anything Now": Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models [50.22128133926407]
我々は2022年12月から2023年12月までの1,405件の脱獄プロンプトを包括的に分析する。
131のjailbreakコミュニティを特定し,Jailbreakプロンプトの特徴とその主要な攻撃戦略を明らかにする。
また,ChatGPT (GPT-3.5) と GPT-4 の攻撃成功率 0.95 を達成できる5つの有効なジェイルブレイクプロンプトを同定した。
論文 参考訳(メタデータ) (2023-08-07T16:55:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。