論文の概要: Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction
- arxiv url: http://arxiv.org/abs/2502.11084v1
- Date: Sun, 16 Feb 2025 11:43:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:59.591843
- Title: Rewrite to Jailbreak: Discover Learnable and Transferable Implicit Harmfulness Instruction
- Title(参考訳): ジェイルブレイクの書き直し:学習可能で伝達不能な有害なインストラクションを発見する
- Authors: Yuting Huang, Chengyuan Liu, Yifeng Feng, Chao Wu, Fei Wu, Kun Kuang,
- Abstract要約: 大規模言語モデル(LLM)は様々な領域に広く適用されている。
LLMを攻撃するための転送可能なブラックボックスジェイルブレイク法であるRewrite to Jailbreak (R2J)アプローチを提案する。
- 参考スコア(独自算出の注目度): 32.04296423547049
- License:
- Abstract: As Large Language Models (LLMs) are widely applied in various domains, the safety of LLMs is increasingly attracting attention to avoid their powerful capabilities being misused. Existing jailbreak methods create a forced instruction-following scenario, or search adversarial prompts with prefix or suffix tokens to achieve a specific representation manually or automatically. However, they suffer from low efficiency and explicit jailbreak patterns, far from the real deployment of mass attacks to LLMs. In this paper, we point out that simply rewriting the original instruction can achieve a jailbreak, and we find that this rewriting approach is learnable and transferable. We propose the Rewrite to Jailbreak (R2J) approach, a transferable black-box jailbreak method to attack LLMs by iteratively exploring the weakness of the LLMs and automatically improving the attacking strategy. The jailbreak is more efficient and hard to identify since no additional features are introduced. Extensive experiments and analysis demonstrate the effectiveness of R2J, and we find that the jailbreak is also transferable to multiple datasets and various types of models with only a few queries. We hope our work motivates further investigation of LLM safety.
- Abstract(参考訳): 大規模言語モデル(LLM)が様々な領域に広く適用されているため、LLMの安全性は、その強力な能力を誤用しないように、ますます注目を集めている。
既存のjailbreakメソッドは、強制的な命令追従シナリオを作成したり、特定の表現を手動または自動で達成するために、プレフィックスまたは接尾辞トークンで敵のプロンプトを検索する。
しかし、彼らは低効率で明確な脱獄パターンに悩まされており、LSMへの大量攻撃の実際の展開からは程遠い。
本稿では,原文の書き直しだけで脱獄が可能であることを指摘し,この書き直し手法が学習可能であり,転送可能であることを見出した。
本稿では,LLMの弱点を反復的に探索し,攻撃戦略を自動改善することにより,LLMを攻撃するための移動可能なブラックボックスジェイルブレイク手法であるRewrite to Jailbreak(R2J)手法を提案する。
jailbreakは、追加機能を導入していないため、より効率的で識別が難しい。
大規模な実験と分析によりR2Jの有効性が示され, ジェイルブレイクは複数のデータセットや, クエリの少ないさまざまな種類のモデルに転送可能であることが判明した。
我々の研究がLLMの安全性のさらなる調査の動機になることを願っています。
関連論文リスト
- xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
ブラックボックス・ジェイルブレイク(Black-box jailbreak)は、大規模な言語モデルの安全メカニズムをバイパスする攻撃である。
強化学習(RL)を利用した新しいブラックボックスジェイルブレイク手法を提案する。
我々は,より厳密で総合的なジェイルブレイク成功評価を提供するために,キーワード,意図マッチング,回答バリデーションを取り入れた総合的ジェイルブレイク評価フレームワークを導入する。
論文 参考訳(メタデータ) (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
我々は,様々なLSM-as-Attackerメソッドを組み込んだ新しいブラックボックス・ジェイルブレイク攻撃フレームワークを提案する。
本手法は,既存のジェイルブレイク研究と実践から得られた3つの重要な知見に基づいて設計されている。
論文 参考訳(メタデータ) (2024-10-31T01:55:33Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Knowledge-to-Jailbreak: One Knowledge Point Worth One Attack [86.6931690001357]
Knowledge-to-jailbreakは、ドメイン知識からジェイルブレイクを生成し、特定のドメイン上での大規模言語モデルの安全性を評価することを目的としている。
12,974組の知識ジェイルブレイクペアを持つ大規模データセットを収集し、ジェイルブレイクジェネレータとして大規模言語モデルを微調整する。
論文 参考訳(メタデータ) (2024-06-17T15:59:59Z) - GUARD: Role-playing to Generate Natural-language Jailbreakings to Test Guideline Adherence of Large Language Models [14.571852591904092]
主要な安全策の1つは、リリース前にジェイルブレイクで大規模言語モデルを積極的にテストすることである。
我々は,人間の世代スタイルでジェイルブレイクを発生させるための,新しい直感的かつ直感的な戦略を提案する。
我々の異なる役割のシステムは、この知識グラフを利用して新しいジェイルブレイクを生成する。
論文 参考訳(メタデータ) (2024-02-05T18:54:43Z) - Jailbreaking Attack against Multimodal Large Language Model [69.52466793164618]
本稿では,マルチモーダル大規模言語モデル(MLLM)に対するジェイルブレイク攻撃に焦点を当てた。
imgJP (emphimage Jailbreaking Prompt) の探索手法を提案する。
提案手法は, 生成したimgJPをジェイルブレイクモデルに転送できるため, 強いモデル伝達性を示す。
論文 参考訳(メタデータ) (2024-02-04T01:29:24Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。