GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking
- URL: http://arxiv.org/abs/2305.15066v2
- Date: Tue, 11 Jul 2023 15:08:00 GMT
- Title: GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking
- Authors: Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi He, Shi Han
- Abstract summary: Large language models like ChatGPT have become indispensable to artificial general intelligence.
In this study, we conduct an investigation to assess the proficiency of LLMs in comprehending graph data.
Our findings contribute valuable insights towards bridging the gap between language models and graph understanding.
- Score: 17.7473474499538
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models~(LLM) like ChatGPT have become indispensable to
artificial general intelligence~(AGI), demonstrating excellent performance in
various natural language processing tasks. In the real world, graph data is
ubiquitous and an essential part of AGI and prevails in domains like social
network analysis, bioinformatics and recommender systems. The training corpus
of large language models often includes some algorithmic components, which
allows them to achieve certain effects on some graph data-related problems.
However, there is still little research on their performance on a broader range
of graph-structured data. In this study, we conduct an extensive investigation
to assess the proficiency of LLMs in comprehending graph data, employing a
diverse range of structural and semantic-related tasks. Our analysis
encompasses 10 distinct tasks that evaluate the LLMs' capabilities in graph
understanding. Through our study, we not only uncover the current limitations
of language models in comprehending graph structures and performing associated
reasoning tasks but also emphasize the necessity for further advancements and
novel approaches to enhance their graph processing capabilities. Our findings
contribute valuable insights towards bridging the gap between language models
and graph understanding, paving the way for more effective graph mining and
knowledge extraction.
Related papers
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
We introduce Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture to capture node-centric local information and interaction-centric global structure.
The proposed scheme allows LLMs to address various graph queries with high efficacy, efficiency, and robustness, while reducing computational costs on large-scale graph tasks.
Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link, and graph-levels highlight the superiority of our method.
arXiv Detail & Related papers (2024-10-29T00:28:02Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Verbalized Graph Representation Learning: A Fully Interpretable Graph Model Based on Large Language Models Throughout the Entire Process [8.820909397907274]
We propose a verbalized graph representation learning (VGRL) method which is fully interpretable.
In contrast to traditional graph machine learning models, VGRL constrains this parameter space to be text description.
We conduct several studies to empirically evaluate the effectiveness of VGRL.
arXiv Detail & Related papers (2024-10-02T12:07:47Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
We provide a systematic review of scenarios and techniques related to large language models on graphs.
We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-attributed graphs, and text-paired graphs.
We discuss the real-world applications of such methods and summarize open-source codes and benchmark datasets.
arXiv Detail & Related papers (2023-12-05T14:14:27Z) - Which Modality should I use -- Text, Motif, or Image? : Understanding Graphs with Large Language Models [14.251972223585765]
This paper introduces a new approach to encoding a graph with diverse modalities, such as text, image, and motif, and prompts to approximate a graph's global connectivity.
The study also presents GraphTMI, a novel benchmark for evaluating Large Language Models (LLMs) in graph structure analysis.
arXiv Detail & Related papers (2023-11-16T12:45:41Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.