Verbalized Graph Representation Learning: A Fully Interpretable Graph Model Based on Large Language Models Throughout the Entire Process
- URL: http://arxiv.org/abs/2410.01457v2
- Date: Fri, 4 Oct 2024 07:56:56 GMT
- Title: Verbalized Graph Representation Learning: A Fully Interpretable Graph Model Based on Large Language Models Throughout the Entire Process
- Authors: Xingyu Ji, Jiale Liu, Lu Li, Maojun Wang, Zeyu Zhang,
- Abstract summary: We propose a verbalized graph representation learning (VGRL) method which is fully interpretable.
In contrast to traditional graph machine learning models, VGRL constrains this parameter space to be text description.
We conduct several studies to empirically evaluate the effectiveness of VGRL.
- Score: 8.820909397907274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning on text-attributed graphs (TAGs) has attracted significant interest due to its wide-ranging real-world applications, particularly through Graph Neural Networks (GNNs). Traditional GNN methods focus on encoding the structural information of graphs, often using shallow text embeddings for node or edge attributes. This limits the model to understand the rich semantic information in the data and its reasoning ability for complex downstream tasks, while also lacking interpretability. With the rise of large language models (LLMs), an increasing number of studies are combining them with GNNs for graph representation learning and downstream tasks. While these approaches effectively leverage the rich semantic information in TAGs datasets, their main drawback is that they are only partially interpretable, which limits their application in critical fields. In this paper, we propose a verbalized graph representation learning (VGRL) method which is fully interpretable. In contrast to traditional graph machine learning models, which are usually optimized within a continuous parameter space, VGRL constrains this parameter space to be text description which ensures complete interpretability throughout the entire process, making it easier for users to understand and trust the decisions of the model. We conduct several studies to empirically evaluate the effectiveness of VGRL and we believe these method can serve as a stepping stone in graph representation learning.
Related papers
- Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs [30.635472655668078]
Text-Attributed Graphs (TAGs) can generalize to unseen graphs and tasks across diverse domains.
We propose a novel cascaded architecture of Language Models (LMs) and Graph Neural Networks (GNNs) as backbone networks.
We demonstrate the model's effectiveness in self-supervised representation learning on unseen graphs, few-shot in-context transfer, and zero-shot transfer.
arXiv Detail & Related papers (2024-02-21T09:06:31Z) - Efficient End-to-end Language Model Fine-tuning on Graphs [21.23522552579571]
Learning from Text-Attributed Graphs (TAGs) has attracted significant attention due to its wide range of real-world applications.
We introduce LEADING, a novel and efficient approach for end-to-end fine-tuning of language models on TAGs.
Our proposed approach demonstrates superior performance, achieving state-of-the-art (SOTA) results on the ogbn-arxiv leaderboard.
arXiv Detail & Related papers (2023-12-07T22:35:16Z) - GRENADE: Graph-Centric Language Model for Self-Supervised Representation
Learning on Text-Attributed Graphs [22.282756544376493]
We develop a novel Graph-Centric Language model, GRENADE, to solve the problem of self-supervised representation learning on text-attributed graphs.
GRENADE exploits the synergistic effect of both pre-trained language model and graph neural network by optimizing with two specialized self-supervised learning algorithms.
The proposed graph-centric self-supervised learning algorithms effectively help GRENADE to capture informative textual semantics as well as structural context information on text-attributed graphs.
arXiv Detail & Related papers (2023-10-23T17:18:35Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
This paper introduces the mathematical definition of this novel problem setting.
We devise a general framework that coordinates a single graph-shared structure learner and multiple graph-specific GNNs.
The well-trained structure learner can directly produce adaptive structures for unseen target graphs without any fine-tuning.
arXiv Detail & Related papers (2023-06-20T03:33:22Z) - Harnessing Explanations: LLM-to-LM Interpreter for Enhanced
Text-Attributed Graph Representation Learning [51.90524745663737]
A key innovation is our use of explanations as features, which can be used to boost GNN performance on downstream tasks.
Our method achieves state-of-the-art results on well-established TAG datasets.
Our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv.
arXiv Detail & Related papers (2023-05-31T03:18:03Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
Large language models like ChatGPT have become indispensable to artificial general intelligence.
In this study, we conduct an investigation to assess the proficiency of LLMs in comprehending graph data.
Our findings contribute valuable insights towards bridging the gap between language models and graph understanding.
arXiv Detail & Related papers (2023-05-24T11:53:19Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.