Challenges of ELA-guided Function Evolution using Genetic Programming
- URL: http://arxiv.org/abs/2305.15245v1
- Date: Wed, 24 May 2023 15:31:01 GMT
- Title: Challenges of ELA-guided Function Evolution using Genetic Programming
- Authors: Fu Xing Long, Diederick Vermetten, Anna V. Kononova, Roman Kalkreuth,
Kaifeng Yang, Thomas B\"ack, Niki van Stein
- Abstract summary: We show that a genetic programming approach guided by exploratory landscape analysis (ELA) properties is not always able to find satisfying functions.
Our results suggest that careful considerations of the weighting of landscape properties, as well as the distance measure used, might be required to evolve functions that are sufficiently representative to the target landscape.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within the optimization community, the question of how to generate new
optimization problems has been gaining traction in recent years. Within topics
such as instance space analysis (ISA), the generation of new problems can
provide new benchmarks which are not yet explored in existing research. Beyond
that, this function generation can also be exploited for solving complex
real-world optimization problems. By generating functions with similar
properties to the target problem, we can create a robust test set for algorithm
selection and configuration.
However, the generation of functions with specific target properties remains
challenging. While features exist to capture low-level landscape properties,
they might not always capture the intended high-level features. We show that a
genetic programming (GP) approach guided by these exploratory landscape
analysis (ELA) properties is not always able to find satisfying functions. Our
results suggest that careful considerations of the weighting of landscape
properties, as well as the distance measure used, might be required to evolve
functions that are sufficiently representative to the target landscape.
Related papers
- The hop-like problem nature -- unveiling and modelling new features of real-world problems [0.0]
We propose a hop-based analysis of the optimization process.
Results indicate the existence of some of the features of the well-known Leading Ones problem.
Experiments reveal what kind of mechanisms must be proposed to improve GAs' effectiveness.
arXiv Detail & Related papers (2024-06-03T11:30:04Z) - Unsupervised Generative Feature Transformation via Graph Contrastive Pre-training and Multi-objective Fine-tuning [28.673952870674146]
We develop a measurement-pretrain-finetune paradigm for Unsupervised Feature Transformation Learning.
For unsupervised feature set utility measurement, we propose a feature value consistency preservation perspective.
For generative transformation finetuning, we regard a feature set as a feature cross sequence and feature transformation as sequential generation.
arXiv Detail & Related papers (2024-05-27T06:50:00Z) - Functional Bilevel Optimization for Machine Learning [36.081761044296904]
We introduce a new functional point of view on bilevel optimization problems for machine learning, where the inner objective is minimized over a function space.
We propose scalable and efficient algorithms for the functional bilevel optimization problem.
arXiv Detail & Related papers (2024-03-29T15:22:03Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - Group-wise Reinforcement Feature Generation for Optimal and Explainable
Representation Space Reconstruction [25.604176830832586]
We reformulate representation space reconstruction into an interactive process of nested feature generation and selection.
We design a group-wise generation strategy to cross a feature group, an operation, and another feature group to generate new features.
We present extensive experiments to demonstrate the effectiveness, efficiency, traceability, and explicitness of our system.
arXiv Detail & Related papers (2022-05-28T21:34:14Z) - Fighting the curse of dimensionality: A machine learning approach to
finding global optima [77.34726150561087]
This paper shows how to find global optima in structural optimization problems.
By exploiting certain cost functions we either obtain the global at best or obtain superior results at worst when compared to established optimization procedures.
arXiv Detail & Related papers (2021-10-28T09:50:29Z) - A New Representation of Successor Features for Transfer across
Dissimilar Environments [60.813074750879615]
Many real-world RL problems require transfer among environments with different dynamics.
We propose an approach based on successor features in which we model successor feature functions with Gaussian Processes.
Our theoretical analysis proves the convergence of this approach as well as the bounded error on modelling successor feature functions.
arXiv Detail & Related papers (2021-07-18T12:37:05Z) - Loss Function Discovery for Object Detection via Convergence-Simulation
Driven Search [101.73248560009124]
We propose an effective convergence-simulation driven evolutionary search algorithm, CSE-Autoloss, for speeding up the search progress.
We conduct extensive evaluations of loss function search on popular detectors and validate the good generalization capability of searched losses.
Our experiments show that the best-discovered loss function combinations outperform default combinations by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors.
arXiv Detail & Related papers (2021-02-09T08:34:52Z) - Towards Explainable Exploratory Landscape Analysis: Extreme Feature
Selection for Classifying BBOB Functions [4.932130498861987]
We show that a surprisingly small number of features -- often less than four -- can suffice to achieve a 98% accuracy.
We show that the classification accuracy transfers to settings in which several instances are involved in training and testing.
arXiv Detail & Related papers (2021-02-01T10:04:28Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.