The hop-like problem nature -- unveiling and modelling new features of real-world problems
- URL: http://arxiv.org/abs/2406.01215v1
- Date: Mon, 3 Jun 2024 11:30:04 GMT
- Title: The hop-like problem nature -- unveiling and modelling new features of real-world problems
- Authors: Michal W. Przewozniczek, Bartosz Frej, Marcin M. Komarnicki,
- Abstract summary: We propose a hop-based analysis of the optimization process.
Results indicate the existence of some of the features of the well-known Leading Ones problem.
Experiments reveal what kind of mechanisms must be proposed to improve GAs' effectiveness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Benchmarks are essential tools for the optimizer's development. Using them, we can check for what kind of problems a given optimizer is effective or not. Since the objective of the Evolutionary Computation field is to support the tools to solve hard, real-world problems, the benchmarks that resemble their features seem particularly valuable. Therefore, we propose a hop-based analysis of the optimization process. We apply this analysis to the NP-hard, large-scale real-world problem. Its results indicate the existence of some of the features of the well-known Leading Ones problem. To model these features well, we propose the Leading Blocks Problem (LBP), which is more general than Leading Ones and some of the benchmarks inspired by this problem. LBP allows for the assembly of new types of hard optimization problems that are not handled well by the considered state-of-the-art genetic algorithm (GA). Finally, the experiments reveal what kind of mechanisms must be proposed to improve GAs' effectiveness while solving LBP and the considered real-world problem.
Related papers
- Evidence that PUBO outperforms QUBO when solving continuous optimization
problems with the QAOA [4.670374869377859]
A core step in solving optimization problems with quantum algorithms is the problem formulation.
Recent studies show that many problems can be solved more efficiently in their native Polynomial Unconstrained Optimization forms.
Our evaluation on suitable benchmark functions, shows that PUBO formulations generally yield better results, while requiring less qubits.
arXiv Detail & Related papers (2023-05-05T09:37:48Z) - Light Unbalanced Optimal Transport [69.18220206873772]
Existing solvers are either based on principles or heavy-weighted with complex optimization objectives involving several neural networks.
We show that our solver provides a universal approximation of UEOT solutions and obtains its generalization bounds.
arXiv Detail & Related papers (2023-03-14T15:44:40Z) - Robust expected improvement for Bayesian optimization [1.8130068086063336]
We propose a surrogate modeling and active learning technique called robust expected improvement (REI) that ports adversarial methodology into the BO/GP framework.
We illustrate and draw comparisons to several competitors on benchmark synthetic exercises and real problems of varying complexity.
arXiv Detail & Related papers (2023-02-16T22:34:28Z) - Exploring the effectiveness of surrogate-assisted evolutionary
algorithms on the batch processing problem [0.0]
This paper introduces a simulation of a well-known batch processing problem in the literature.
Evolutionary algorithms such as Genetic Algorithm (GA), Differential Evolution (DE) are used to find the optimal schedule for the simulation.
We then compare the quality of solutions obtained by the surrogate-assisted versions of the algorithms against the baseline algorithms.
arXiv Detail & Related papers (2022-10-31T09:00:39Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
Quantum and quantum-inspired optimisation algorithms have shown promising performance when applied to academic benchmarks as well as real-world problems.
However, QUBO solvers are single objective solvers. To make them more efficient at solving problems with multiple objectives, a decision on how to convert such multi-objective problems to single-objective problems need to be made.
arXiv Detail & Related papers (2022-10-20T14:54:37Z) - Design-Bench: Benchmarks for Data-Driven Offline Model-Based
Optimization [82.02008764719896]
Black-box model-based optimization problems are ubiquitous in a wide range of domains, such as the design of proteins, DNA sequences, aircraft, and robots.
We present Design-Bench, a benchmark for offline MBO with a unified evaluation protocol and reference implementations of recent methods.
Our benchmark includes a suite of diverse and realistic tasks derived from real-world optimization problems in biology, materials science, and robotics.
arXiv Detail & Related papers (2022-02-17T05:33:27Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Identifying Properties of Real-World Optimisation Problems through a
Questionnaire [2.805617945875364]
This work investigates the properties of real-world problems through a questionnaire.
It enables the design of future benchmark problems that more closely resemble those found in the real world.
arXiv Detail & Related papers (2020-11-11T05:09:01Z) - Hardness of Random Optimization Problems for Boolean Circuits,
Low-Degree Polynomials, and Langevin Dynamics [78.46689176407936]
We show that families of algorithms fail to produce nearly optimal solutions with high probability.
For the case of Boolean circuits, our results improve the state-of-the-art bounds known in circuit complexity theory.
arXiv Detail & Related papers (2020-04-25T05:45:59Z) - Revisiting SGD with Increasingly Weighted Averaging: Optimization and
Generalization Perspectives [50.12802772165797]
The averaging technique combines all iterative solutions into a single solution.
Experiments have demonstrated trade-off and the effectiveness of averaging compared with other averaging schemes.
arXiv Detail & Related papers (2020-03-09T18:14:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.