Successor-Predecessor Intrinsic Exploration
- URL: http://arxiv.org/abs/2305.15277v3
- Date: Thu, 25 Jan 2024 15:58:06 GMT
- Title: Successor-Predecessor Intrinsic Exploration
- Authors: Changmin Yu, Neil Burgess, Maneesh Sahani, Samuel J. Gershman
- Abstract summary: We focus on exploration with intrinsic rewards, where the agent transiently augments the external rewards with self-generated intrinsic rewards.
We propose Successor-Predecessor Intrinsic Exploration (SPIE), an exploration algorithm based on a novel intrinsic reward combining prospective and retrospective information.
We show that SPIE yields more efficient and ethologically plausible exploratory behaviour in environments with sparse rewards and bottleneck states than competing methods.
- Score: 18.440869985362998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Exploration is essential in reinforcement learning, particularly in
environments where external rewards are sparse. Here we focus on exploration
with intrinsic rewards, where the agent transiently augments the external
rewards with self-generated intrinsic rewards. Although the study of intrinsic
rewards has a long history, existing methods focus on composing the intrinsic
reward based on measures of future prospects of states, ignoring the
information contained in the retrospective structure of transition sequences.
Here we argue that the agent can utilise retrospective information to generate
explorative behaviour with structure-awareness, facilitating efficient
exploration based on global instead of local information. We propose
Successor-Predecessor Intrinsic Exploration (SPIE), an exploration algorithm
based on a novel intrinsic reward combining prospective and retrospective
information. We show that SPIE yields more efficient and ethologically
plausible exploratory behaviour in environments with sparse rewards and
bottleneck states than competing methods. We also implement SPIE in deep
reinforcement learning agents, and show that the resulting agent achieves
stronger empirical performance than existing methods on sparse-reward Atari
games.
Related papers
- Random Latent Exploration for Deep Reinforcement Learning [71.88709402926415]
This paper introduces a new exploration technique called Random Latent Exploration (RLE)
RLE combines the strengths of bonus-based and noise-based (two popular approaches for effective exploration in deep RL) exploration strategies.
We evaluate it on the challenging Atari and IsaacGym benchmarks and show that RLE exhibits higher overall scores across all the tasks than other approaches.
arXiv Detail & Related papers (2024-07-18T17:55:22Z) - Information Content Exploration [1.7034813545878589]
We propose a new intrinsic reward that systemically quantifies exploratory behavior and promotes state coverage.
We show that our information theoretic reward induces efficient exploration and outperforms in various games.
arXiv Detail & Related papers (2023-10-10T16:51:32Z) - DEIR: Efficient and Robust Exploration through
Discriminative-Model-Based Episodic Intrinsic Rewards [2.09711130126031]
Exploration is a fundamental aspect of reinforcement learning (RL), and its effectiveness is a deciding factor in the performance of RL algorithms.
Recent studies have shown the effectiveness of encouraging exploration with intrinsic rewards estimated from novelties in observations.
We propose DEIR, a novel method in which we theoretically derive an intrinsic reward with a conditional mutual information term.
arXiv Detail & Related papers (2023-04-21T06:39:38Z) - Rewarding Episodic Visitation Discrepancy for Exploration in
Reinforcement Learning [64.8463574294237]
We propose Rewarding Episodic Visitation Discrepancy (REVD) as an efficient and quantified exploration method.
REVD provides intrinsic rewards by evaluating the R'enyi divergence-based visitation discrepancy between episodes.
It is tested on PyBullet Robotics Environments and Atari games.
arXiv Detail & Related papers (2022-09-19T08:42:46Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - Long-Term Exploration in Persistent MDPs [68.8204255655161]
We propose an exploration method called Rollback-Explore (RbExplore)
In this paper, we propose an exploration method called Rollback-Explore (RbExplore), which utilizes the concept of the persistent Markov decision process.
We test our algorithm in the hard-exploration Prince of Persia game, without rewards and domain knowledge.
arXiv Detail & Related papers (2021-09-21T13:47:04Z) - Self-Supervised Exploration via Latent Bayesian Surprise [4.088019409160893]
In this work, we propose a curiosity-based bonus as intrinsic reward for Reinforcement Learning.
We extensively evaluate our model by measuring the agent's performance in terms of environment exploration.
Our model is cheap and empirically shows state-of-the-art performance on several problems.
arXiv Detail & Related papers (2021-04-15T14:40:16Z) - Fast active learning for pure exploration in reinforcement learning [48.98199700043158]
We show that bonuses that scale with $1/n$ bring faster learning rates, improving the known upper bounds with respect to the dependence on the horizon.
We also show that with an improved analysis of the stopping time, we can improve by a factor $H$ the sample complexity in the best-policy identification setting.
arXiv Detail & Related papers (2020-07-27T11:28:32Z) - RIDE: Rewarding Impact-Driven Exploration for Procedurally-Generated
Environments [15.736899098702972]
We propose a novel type of intrinsic reward which encourages the agent to take actions that lead to significant changes in its learned state representation.
We evaluate our method on multiple challenging procedurally-generated tasks in MiniGrid.
arXiv Detail & Related papers (2020-02-27T18:03:16Z) - Never Give Up: Learning Directed Exploration Strategies [63.19616370038824]
We propose a reinforcement learning agent to solve hard exploration games by learning a range of directed exploratory policies.
We construct an episodic memory-based intrinsic reward using k-nearest neighbors over the agent's recent experience to train the directed exploratory policies.
A self-supervised inverse dynamics model is used to train the embeddings of the nearest neighbour lookup, biasing the novelty signal towards what the agent can control.
arXiv Detail & Related papers (2020-02-14T13:57:22Z) - Long-Term Visitation Value for Deep Exploration in Sparse Reward
Reinforcement Learning [34.38011902445557]
Reinforcement learning with sparse rewards is still an open challenge.
We present a novel approach that plans exploration actions far into the future by using a long-term visitation count.
Contrary to existing methods which use models of reward and dynamics, our approach is off-policy and model-free.
arXiv Detail & Related papers (2020-01-01T01:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.