論文の概要: The Crucial Role of Normalization in Sharpness-Aware Minimization
- arxiv url: http://arxiv.org/abs/2305.15287v1
- Date: Wed, 24 May 2023 16:09:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 14:30:53.400589
- Title: The Crucial Role of Normalization in Sharpness-Aware Minimization
- Title(参考訳): シャープネス認識最小化における正規化の役割
- Authors: Yan Dai, Kwangjun Ahn, Suvrit Sra
- Abstract要約: Sharpness-Aware Minimization (SAM)は勾配に基づくニューラルネットワークであり、予測性能を大幅に向上させる。
正規化の2つの性質がSAMを超実用性の選択に対して堅牢にすると主張する。
- 参考スコア(独自算出の注目度): 46.66157710472418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sharpness-Aware Minimization (SAM) is a recently proposed gradient-based
optimizer (Foret et al., ICLR 2021) that greatly improves the prediction
performance of deep neural networks. Consequently, there has been a surge of
interest in explaining its empirical success. We focus, in particular, on
understanding the role played by normalization, a key component of the SAM
updates. We theoretically and empirically study the effect of normalization in
SAM for both convex and non-convex functions, revealing two key roles played by
normalization: i) it helps in stabilizing the algorithm; and ii) it enables the
algorithm to drift along a continuum (manifold) of minima -- a property
identified by recent theoretical works that is the key to better performance.
We further argue that these two properties of normalization make SAM robust
against the choice of hyper-parameters, supporting the practicality of SAM. Our
conclusions are backed by various experiments.
- Abstract(参考訳): Sharpness-Aware Minimization (SAM)は、ディープニューラルネットワークの予測性能を大幅に改善する勾配に基づく最適化(Foret et al., ICLR 2021)である。
その結果、その実証的な成功を説明することへの関心が高まっている。
特に、SAM更新の重要なコンポーネントである正規化による役割の理解に重点を置いています。
我々は、SAMにおける凸関数と非凸関数の両方に対する正規化の効果を理論的に経験的に研究し、正規化が果たす2つの重要な役割を明らかにした。
一 アルゴリズムの安定化に役立ち、かつ
ii) アルゴリズムがminimaの連続体(多様体)に沿ってドリフトすることを可能にする。
さらに、正規化のこれらの2つの性質はSAMを超パラメータの選択に対して堅牢にし、SAMの実用性を支持することを主張する。
我々の結論は様々な実験によって裏付けられている。
関連論文リスト
- $\boldsymbolμ\mathbf{P^2}$: Effective Sharpness Aware Minimization Requires Layerwise Perturbation Scaling [49.25546155981064]
シャープネス認識最小化(SAM)を用いたニューラルネットワークの無限幅限界について検討する。
この結果から, SAMのダイナミクスは, 広範なニューラルネットワークにおいて, 最後の層のみにSAMを適用することで効果的に低下することが判明した。
対照的に、階層的にスケールする摂動を伴う安定したパラメータ化を識別し、それを $textitMaximal Update and Perturbation $$mu$P$2$ と呼びます。
論文 参考訳(メタデータ) (2024-10-31T16:32:04Z) - Friendly Sharpness-Aware Minimization [62.57515991835801]
シャープネス・アウェアの最小化(SAM)は、トレーニング損失とロスシャープネスの両方を最小化することにより、ディープニューラルネットワークトレーニングの改善に役立っている。
対向性摂動におけるバッチ特異的勾配雑音の主な役割,すなわち現在のミニバッチ勾配について検討する。
逆勾配雑音成分を分解することにより、全勾配のみに依存すると一般化が低下し、除くと性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-03-19T01:39:33Z) - Normalization Layers Are All That Sharpness-Aware Minimization Needs [53.799769473526275]
シャープネス認識最小化(SAM)は,ミニマのシャープネスを低減するために提案された。
SAMの逆数ステップにおけるアフィン正規化パラメータ(典型的には総パラメータの0.1%)のみの摂動は、全てのパラメータの摂動よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-07T08:05:46Z) - AdaSAM: Boosting Sharpness-Aware Minimization with Adaptive Learning
Rate and Momentum for Training Deep Neural Networks [76.90477930208982]
シャープネス認識(SAM)は、ディープニューラルネットワークのトレーニングにおいて、より一般的なものにするため、広範囲に研究されている。
AdaSAMと呼ばれる適応的な学習摂動と運動量加速度をSAMに統合することはすでに検討されている。
いくつかのNLPタスクにおいて,SGD,AMS,SAMsGradと比較して,AdaSAMが優れた性能を発揮することを示す実験を行った。
論文 参考訳(メタデータ) (2023-03-01T15:12:42Z) - On Statistical Properties of Sharpness-Aware Minimization: Provable
Guarantees [5.91402820967386]
シャープネス・アウェアの最小化 (SAM) が一般化する理由について, 新たな理論的説明を行う。
SAMはシャープな問題と非シャープな問題の両方に特に適している。
本研究は,ディープニューラルネットワークを用いた数値実験により検証した。
論文 参考訳(メタデータ) (2023-02-23T07:52:31Z) - mSAM: Micro-Batch-Averaged Sharpness-Aware Minimization [20.560184120992094]
シャープネス・アウェアの最小化手法は、フラットな最小化に向けて勾配降下法を操る基本損失関数を変更する。
我々は最近開発されたフラットネス解析のためのよく研究された一般的なフレームワークを拡張し、SAMがSGDよりもフラットなミニマを達成し、mSAMがSAMよりもフラットなミニマを達成できることを理論的に示す。
論文 参考訳(メタデータ) (2023-02-19T23:27:12Z) - SAM operates far from home: eigenvalue regularization as a dynamical
phenomenon [15.332235979022036]
シャープネス認識最小化(SAM)アルゴリズムは、ロス・ヘッセンの大きな固有値を制御することが示されている。
SAMは学習軌跡全体を通して固有値の強い正規化を提供することを示す。
本理論は,学習速度とSAM半径パラメータの関数として最大固有値を予測する。
論文 参考訳(メタデータ) (2023-02-17T04:51:20Z) - Improved Deep Neural Network Generalization Using m-Sharpness-Aware
Minimization [14.40189851070842]
シャープネス・アウェア最小化(SAM)は、基礎となる損失関数を修正し、フラットなミニマへ導出する方法を導出する。
近年の研究ではmSAMがSAMよりも精度が高いことが示唆されている。
本稿では,様々なタスクやデータセットにおけるmSAMの包括的評価について述べる。
論文 参考訳(メタデータ) (2022-12-07T00:37:55Z) - How Does Sharpness-Aware Minimization Minimize Sharpness? [29.90109733192208]
シャープネス・アウェアの最小化(SAM)は、ディープニューラルネットワークの一般化を改善するための非常に効果的な正規化手法である。
本稿では、SAMが基礎となるメカニズムを規則化し、明確化するという正確なシャープネスの概念を厳格に説明する。
論文 参考訳(メタデータ) (2022-11-10T17:56:38Z) - Efficient Sharpness-aware Minimization for Improved Training of Neural
Networks [146.2011175973769]
本稿では,SAM s の効率を高コストで向上する高効率シャープネス認識最小化器 (M) を提案する。
Mには、Stochastic Weight PerturbationとSharpness-Sensitive Data Selectionという、2つの新しい効果的なトレーニング戦略が含まれている。
我々は、CIFARとImageNetデータセットの広範な実験を通して、ESAMはSAMよりも100%余分な計算を40%のvis-a-visベースに必要とせずに効率を向上させることを示した。
論文 参考訳(メタデータ) (2021-10-07T02:20:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。