Science in the Era of ChatGPT, Large Language Models and Generative AI:
Challenges for Research Ethics and How to Respond
- URL: http://arxiv.org/abs/2305.15299v4
- Date: Sat, 29 Jul 2023 12:54:20 GMT
- Title: Science in the Era of ChatGPT, Large Language Models and Generative AI:
Challenges for Research Ethics and How to Respond
- Authors: Evangelos Pournaras
- Abstract summary: This paper reviews challenges, ethical and integrity risks in science conduct in the advent of generative AI.
The role of AI language models as a research instrument and subject is scrutinized along with ethical implications for scientists, participants and reviewers.
- Score: 3.3504365823045044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models of artificial intelligence (AI), such as ChatGPT, find
remarkable but controversial applicability in science and research. This paper
reviews epistemological challenges, ethical and integrity risks in science
conduct in the advent of generative AI. This is with the aim to lay new timely
foundations for a high-quality research ethics review. The role of AI language
models as a research instrument and subject is scrutinized along with ethical
implications for scientists, participants and reviewers. New emerging practices
for research ethics review are discussed, concluding with ten recommendations
that shape a response for a more responsible research conduct in the era of AI.
Related papers
- AI Ethics: A Bibliometric Analysis, Critical Issues, and Key Gaps [3.8214695776749013]
This study conducts a comprehensive bibliometric analysis of the AI ethics literature over the past two decades.
They present seven key AI ethics issues, encompassing the Collingridge dilemma, the AI status debate, challenges associated with AI transparency and explainability, privacy protection complications, considerations of justice and fairness, concerns about algocracy and human enfeeblement, and the issue of superintelligence.
arXiv Detail & Related papers (2024-03-12T21:43:21Z) - Applications, challenges and ethical issues of AI and ChatGPT in
education [0.0]
Artificial Intelligence in recent years has shown an unprecedentedly impressive development.
This paper aims to describe the opportunities emerging from the use of artificial intelligence and ChatGPT to improve education.
arXiv Detail & Related papers (2024-01-22T14:48:13Z) - Control Risk for Potential Misuse of Artificial Intelligence in Science [85.91232985405554]
We aim to raise awareness of the dangers of AI misuse in science.
We highlight real-world examples of misuse in chemical science.
We propose a system called SciGuard to control misuse risks for AI models in science.
arXiv Detail & Related papers (2023-12-11T18:50:57Z) - Human participants in AI research: Ethics and transparency in practice [0.9608936085613567]
Research involving human participants has been critical to advances in artificial intelligence (AI) and machine learning (ML)
Yet AI and participatory researchers lack guidelines for ethical research with human participants in AI and ML.
This paper seeks to address these concerns and position technical researchers with practical knowledge for their work.
arXiv Detail & Related papers (2023-11-02T14:12:21Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - The ethical ambiguity of AI data enrichment: Measuring gaps in research
ethics norms and practices [2.28438857884398]
This study explores how, and to what extent, comparable research ethics requirements and norms have developed for AI research and data enrichment.
Leading AI venues have begun to establish protocols for human data collection, but these are are inconsistently followed by authors.
arXiv Detail & Related papers (2023-06-01T16:12:55Z) - Human-Centered Responsible Artificial Intelligence: Current & Future
Trends [76.94037394832931]
In recent years, the CHI community has seen significant growth in research on Human-Centered Responsible Artificial Intelligence.
All of this work is aimed at developing AI that benefits humanity while being grounded in human rights and ethics, and reducing the potential harms of AI.
In this special interest group, we aim to bring together researchers from academia and industry interested in these topics to map current and future research trends.
arXiv Detail & Related papers (2023-02-16T08:59:42Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - Ethics in AI through the Practitioner's View: A Grounded Theory
Literature Review [12.941478155592502]
In recent years, numerous incidents have raised the profile of ethical issues in AI development and led to public concerns about the proliferation of AI technology in our everyday lives.
We conducted a grounded theory literature review (GTLR) of 38 primary empirical studies that included AI practitioners' views on ethics in AI.
We present a taxonomy of ethics in AI from practitioners' viewpoints to assist AI practitioners in identifying and understanding the different aspects of AI ethics.
arXiv Detail & Related papers (2022-06-20T00:28:51Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
Benchmarks are seen as the cornerstone for measuring technical progress in Artificial Intelligence (AI) research.
An increasingly prominent research area in AI is ethics, which currently has no set of benchmarks nor commonly accepted way for measuring the 'ethicality' of an AI system.
We argue that it makes more sense to talk about 'values' rather than 'ethics' when considering the possible actions of present and future AI systems.
arXiv Detail & Related papers (2022-04-11T14:36:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.