論文の概要: On the robust learning mixtures of linear regressions
- arxiv url: http://arxiv.org/abs/2305.15317v1
- Date: Tue, 23 May 2023 03:50:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 14:21:16.914708
- Title: On the robust learning mixtures of linear regressions
- Title(参考訳): 線形回帰のロバストな学習混合について
- Authors: Ying Huang and Liang Chen
- Abstract要約: 線形回帰の頑健な学習混合の問題を考える。
準多項式時間アルゴリズムは、ある程度の分離条件下で得られることを示す。
- 参考スコア(独自算出の注目度): 8.494387932756336
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this note, we consider the problem of robust learning mixtures of linear
regressions. We connect mixtures of linear regressions and mixtures of
Gaussians with a simple thresholding, so that a quasi-polynomial time algorithm
can be obtained under some mild separation condition. This algorithm has
significantly better robustness than the previous result.
- Abstract(参考訳): 本稿では,線形回帰のロバストな学習混合問題について考察する。
線形回帰とガウス型混合の混合を単純なしきい値付きで結合し, 軽度分離条件下で準多項時間アルゴリズムを得ることができる。
このアルゴリズムは、以前の結果よりもかなり頑健である。
関連論文リスト
- Agnostic Learning of Mixed Linear Regressions with EM and AM Algorithms [22.79595679373698]
混合線形回帰は統計学と機械学習においてよく研究されている問題である。
本稿では、サンプルから混合線形回帰を学習する際のより一般的な問題について考察する。
AMアルゴリズムとEMアルゴリズムは, 集団損失最小化器に収束することにより, 混合線形回帰学習につながることを示す。
論文 参考訳(メタデータ) (2024-06-03T09:43:24Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Shuffled linear regression through graduated convex relaxation [12.614901374282868]
シャッフル線形回帰問題は、入力と出力の対応が不明なデータセットにおける線形関係を復元することを目的としている。
この問題は、調査データを含む広範囲のアプリケーションで発生する。
後最大化目的関数に基づく線形回帰をシャッフルする新しい最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-30T17:33:48Z) - A flexible empirical Bayes approach to multiple linear regression and connections with penalized regression [8.663322701649454]
大規模多重回帰に対する新しい経験的ベイズ手法を提案する。
当社のアプローチでは、フレキシブルな"適応縮小"と変分近似の2つの主要なアイデアが組み合わさっている。
提案手法では, 後進平均値がペナル化回帰問題を解く。
論文 参考訳(メタデータ) (2022-08-23T12:42:57Z) - Time varying regression with hidden linear dynamics [74.9914602730208]
線形力学系に従って未知のパラメータが進化することを前提とした時間変化線形回帰モデルを再検討する。
反対に、基礎となる力学が安定である場合、このモデルのパラメータは2つの通常の最小二乗推定と組み合わせることで、データから推定できることが示される。
論文 参考訳(メタデータ) (2021-12-29T23:37:06Z) - Eliminating Multicollinearity Issues in Neural Network Ensembles:
Incremental, Negatively Correlated, Optimal Convex Blending [0.2294014185517203]
ニューラルネットワークのアンサンブルを用いて集約回帰器を構成するインクリメンタルアルゴリズムを導入する。
集合回帰器と新たに訓練されたニューラルネットワークを凸性制約下で最適にブレンドする。
このフレームワークでは、直線性の問題はまったく発生せず、メソッドが正確かつ堅牢になるようにレンダリングします。
論文 参考訳(メタデータ) (2021-04-30T01:32:08Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
このプロセスの混合物の観察から多次元音源過程を復元する古典的問題を考察する。
このリカバリは、この混合物が十分に微分可能で可逆な関数によって与えられる場合、多くの一般的なプロセスのモデル(座標の順序と単調スケーリングまで)に対して可能であることを示す。
論文 参考訳(メタデータ) (2021-02-04T20:28:44Z) - Learning Fast Approximations of Sparse Nonlinear Regression [50.00693981886832]
本研究では,Threshold Learned Iterative Shrinkage Algorithming (NLISTA)を導入することでギャップを埋める。
合成データを用いた実験は理論結果と相関し,その手法が最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-10-26T11:31:08Z) - Learning Mixtures of Low-Rank Models [89.39877968115833]
低ランクモデルの計算混合を学習する問題について検討する。
ほぼ最適サンプルを用いて未知の行列を復元することが保証されるアルゴリズムを開発する。
さらに,提案アルゴリズムはランダムノイズに対して確実に安定である。
論文 参考訳(メタデータ) (2020-09-23T17:53:48Z) - Multiscale Non-stationary Stochastic Bandits [83.48992319018147]
本稿では,非定常線形帯域問題に対して,Multiscale-LinUCBと呼ばれる新しいマルチスケール変更点検出法を提案する。
実験結果から,提案手法は非定常環境下での他の最先端アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2020-02-13T00:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。