論文の概要: Breaking the Curse of Quality Saturation with User-Centric Ranking
- arxiv url: http://arxiv.org/abs/2305.15333v1
- Date: Wed, 24 May 2023 16:45:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 14:10:04.324126
- Title: Breaking the Curse of Quality Saturation with User-Centric Ranking
- Title(参考訳): ユーザ中心のランキングで品質飽和の呪いを破る
- Authors: Zhuokai Zhao, Yang Yang, Wenyu Wang, Chihuang Liu, Yu Shi, Wenjie Hu,
Haotian Zhang, Shuang Yang
- Abstract要約: 検索、広告、レコメンデーションにおける重要なパズルは、ランキングモデルが利用可能なユーザーインタラクションデータのごく一部しか利用できないことである。
この定式化は有望なスケーリング特性を持ち、より大規模なデータセット上でより優れた収束モデルをトレーニングできることを示す。
- 参考スコア(独自算出の注目度): 22.53800680854746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A key puzzle in search, ads, and recommendation is that the ranking model can
only utilize a small portion of the vastly available user interaction data. As
a result, increasing data volume, model size, or computation FLOPs will quickly
suffer from diminishing returns. We examined this problem and found that one of
the root causes may lie in the so-called ``item-centric'' formulation, which
has an unbounded vocabulary and thus uncontrolled model complexity. To mitigate
quality saturation, we introduce an alternative formulation named
``user-centric ranking'', which is based on a transposed view of the dyadic
user-item interaction data. We show that this formulation has a promising
scaling property, enabling us to train better-converged models on substantially
larger data sets.
- Abstract(参考訳): 検索、広告、レコメンデーションにおける重要なパズルは、ランキングモデルが利用可能なユーザーインタラクションデータのごく一部しか利用できないことである。
その結果、データボリューム、モデルサイズ、あるいは計算フロップが増加すると、すぐにリターンが減少する。
この問題を調査し,その根源の1つが,境界のない語彙を持ち,モデル複雑性を制御できない,いわゆる ‘item-centric'' の定式化にある可能性があることを発見した。
品質の飽和を緩和するために,dyadicユーザとitemインタラクションデータの変換ビューに基づく,‘ユーザ中心のランキング’という別の定式化を導入する。
この定式化は有望なスケーリング特性を持ち、より大規模なデータセット上でより優れた収束モデルをトレーニングできることを示す。
関連論文リスト
- Data curation via joint example selection further accelerates multimodal learning [3.329535792151987]
サンプルを個別に選択するよりも,データのバッチを共同で選択することが学習に有効であることを示す。
このようなバッチを選択するための単純かつトラクタブルなアルゴリズムを導出し、個別に優先順位付けされたデータポイントを超えてトレーニングを著しく加速する。
論文 参考訳(メタデータ) (2024-06-25T16:52:37Z) - Optimizing Novelty of Top-k Recommendations using Large Language Models and Reinforcement Learning [16.287067991245962]
現実世界のシステムでは、新しいモデルに対する重要な考慮は、トップkレコメンデーションの新規性である。
本稿では,大規模言語モデルが新しい項目に対するフィードバックを提供する強化学習(RL)の定式化を提案する。
大規模検索エンジンにおけるクエリーアドレコメンデーションタスクの新規性向上のための提案アルゴリズムの評価を行った。
論文 参考訳(メタデータ) (2024-06-20T10:20:02Z) - On the Embedding Collapse when Scaling up Recommendation Models [53.66285358088788]
埋め込み崩壊現象をスケーラビリティの阻害とみなし、埋め込み行列は低次元の部分空間を占有する傾向にある。
本稿では,組込み集合固有の相互作用モジュールを組み込んで,多様性を持つ組込み集合を学習する,単純かつ効果的な組込み設計を提案する。
論文 参考訳(メタデータ) (2023-10-06T17:50:38Z) - Revisiting Neural Retrieval on Accelerators [20.415728886298915]
検索の重要な構成要素は、(ユーザ、アイテム)類似性をモデル化することである。
その人気にもかかわらず、ドット製品は多面的であり、おそらく高いランクにある複雑なユーザとイテムのインタラクションをキャプチャすることはできない。
本稿では,基本類似度関数の適応的構成として,ユーザ,アイテムの類似度をモデル化したロジットのテキストミックス(MoL)を提案する。
論文 参考訳(メタデータ) (2023-06-06T22:08:42Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
我々は、データに基づいてトレーニングされたモデルに、データのスプリアスパターンが現れるかどうかを調べるために、新しい統計手法を用いる。
トレーニングデータに*reweight*に最適化アプローチを適用し、数千のスプリアス相関を低減します。
驚くべきことに、この方法ではトレーニングデータの語彙バイアスを低減できますが、トレーニングされたモデルで対応するバイアスの強い証拠がまだ見つかっていません。
論文 参考訳(メタデータ) (2023-06-03T20:12:27Z) - Characterizing Attribution and Fluency Tradeoffs for Retrieval-Augmented
Large Language Models [6.425088990363101]
本研究では, 大規模言語モデルにおけるフラレンシと帰属の関係について検討した。
より大きなモデルは、流布と帰属の両方において、より優れた結果をもたらす傾向があることを示す。
そこで本研究では,より小さなモデルで大きなモデルとのギャップを埋めることと,トップk検索のメリットを両立できるレシピを提案する。
論文 参考訳(メタデータ) (2023-02-11T02:43:34Z) - Perceptual Score: What Data Modalities Does Your Model Perceive? [73.75255606437808]
モデルが入力特徴の異なる部分集合に依存する度合いを評価する指標である知覚スコアを導入する。
近年,視覚的質問応答に対するマルチモーダルモデルでは,前者よりも視覚的データを知覚しにくい傾向がみられた。
知覚スコアを使用することで、スコアをデータサブセットのコントリビューションに分解することで、モデルのバイアスを分析することもできる。
論文 参考訳(メタデータ) (2021-10-27T12:19:56Z) - Combining Diverse Feature Priors [90.74601233745047]
多様な機能事前セットでトレーニングされたモデルには、重複する障害モードが少なくなることを示す。
また、追加(ラベルなし)データでそのようなモデルを共同でトレーニングすることで、互いのミスを修正できることも示しています。
論文 参考訳(メタデータ) (2021-10-15T17:31:10Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
我々は、最小限の統計量という情報理論の概念を用いて、ロバストで刺激的な表現を定義し、分析する。
入力分布のバイアスしか持たない場合でも、モデルはトレーニングデータから急激な特徴を拾い上げることができることを証明しています。
分析から着想を得た結果,グループDROは,グループ同士の相関関係を直接考慮しない場合に失敗する可能性が示唆された。
論文 参考訳(メタデータ) (2021-06-14T05:39:09Z) - Variation Control and Evaluation for Generative SlateRecommendations [22.533997063750597]
アイテムの摂動はスレート変動を強制し,生成スレートの過剰濃度を緩和できることを示した。
また,ピボット選択フェーズを生成プロセスから分離し,モデルが生成前に摂動を適用できるようにする。
論文 参考訳(メタデータ) (2021-02-26T05:04:40Z) - Learning to Model and Ignore Dataset Bias with Mixed Capacity Ensembles [66.15398165275926]
本稿では,データセット固有のパターンを自動的に検出・無視する手法を提案する。
我々の方法は、より高い容量モデルでアンサンブルで低容量モデルを訓練する。
視覚的質問応答データセットの10ポイントゲインを含む,すべての設定の改善を示す。
論文 参考訳(メタデータ) (2020-11-07T22:20:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。