論文の概要: Data curation via joint example selection further accelerates multimodal learning
- arxiv url: http://arxiv.org/abs/2406.17711v1
- Date: Tue, 25 Jun 2024 16:52:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 13:41:09.704818
- Title: Data curation via joint example selection further accelerates multimodal learning
- Title(参考訳): 共同例選択によるデータキュレーションによるマルチモーダル学習の促進
- Authors: Talfan Evans, Nikhil Parthasarathy, Hamza Merzic, Olivier J. Henaff,
- Abstract要約: サンプルを個別に選択するよりも,データのバッチを共同で選択することが学習に有効であることを示す。
このようなバッチを選択するための単純かつトラクタブルなアルゴリズムを導出し、個別に優先順位付けされたデータポイントを超えてトレーニングを著しく加速する。
- 参考スコア(独自算出の注目度): 3.329535792151987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data curation is an essential component of large-scale pretraining. In this work, we demonstrate that jointly selecting batches of data is more effective for learning than selecting examples independently. Multimodal contrastive objectives expose the dependencies between data and thus naturally yield criteria for measuring the joint learnability of a batch. We derive a simple and tractable algorithm for selecting such batches, which significantly accelerate training beyond individually-prioritized data points. As performance improves by selecting from larger super-batches, we also leverage recent advances in model approximation to reduce the associated computational overhead. As a result, our approach--multimodal contrastive learning with joint example selection (JEST)--surpasses state-of-the-art models with up to 13$\times$ fewer iterations and 10$\times$ less computation. Essential to the performance of JEST is the ability to steer the data selection process towards the distribution of smaller, well-curated datasets via pretrained reference models, exposing the level of data curation as a new dimension for neural scaling laws.
- Abstract(参考訳): データキュレーションは大規模な事前学習の重要な要素である。
本研究では,データのバッチを個別に選択するよりも,データのバッチを共同で選択することが効果的であることを実証する。
マルチモーダルコントラスト目的は、データ間の依存関係を公開し、バッチの合同学習可能性を測定するための基準を自然に獲得する。
このようなバッチを選択するための単純でトラクタブルなアルゴリズムを導出し、個別に優先順位付けされたデータポイントを超えてトレーニングを著しく加速する。
より大きなスーパーバッチから選択することで性能が向上すると共に、モデル近似の最近の進歩を活用して、関連する計算オーバーヘッドを低減する。
その結果、JEST(Joint example selection)を用いたマルチモーダル・コントラスト学習は、最大13$\times$少ないイテレーションと10$\times$少ない計算で最先端のモデルを克服する。
JESTのパフォーマンスに欠かせないのは、トレーニング済みの参照モデルを通じて、より小さく、十分に計算されたデータセットの配布に向けて、データ選択プロセスをステアリングし、データキュレーションのレベルを、ニューラルスケーリング法則の新たな次元として公開することだ。
関連論文リスト
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
実世界のデータセットは、しばしば冗長でノイズの多いデータを含み、トレーニング効率とモデルパフォーマンスに悪影響を及ぼす。
データ選択は、データセット全体から最も代表的なサンプルを特定することを約束している。
より堅牢で一般化可能なサンプル選択にマルチモーダル情報を活用するCLIPを利用した新しいデータ選択フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T03:00:58Z) - Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$は、Lifelong Instruction Tuningの新しいマルチウェイおよびアダプティブデータ選択アプローチである。
勾配に基づくサンプルベクトルをグループ化して擬似スキルクラスタを構築する。
セレクタエキスパートのプールから各スキルクラスタの最高のパフォーマンスデータセレクタを選択する。
論文 参考訳(メタデータ) (2024-10-14T15:48:09Z) - Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs [18.242110417706]
この研究は、膨大なラベルのないオープンデータから事前訓練された言語モデルへの活用と選択に焦点を当てている。
特定の条件下での微調整タスクに対するこのアプローチの最適性を示す。
提案手法は既存の手法よりもはるかに高速で,GPU時間内に数百万のサンプルにスケールアップする。
論文 参考訳(メタデータ) (2024-05-05T00:08:00Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Bad Students Make Great Teachers: Active Learning Accelerates Large-Scale Visual Understanding [9.112203072394648]
パワーロースケーリングは、均一サンプリングによる大規模トレーニングが違法に遅いことを示している。
アクティブな学習手法は、最も関係のある事例に基づいて学習を優先順位付けすることで、データの効率を向上させることを目的としている。
論文 参考訳(メタデータ) (2023-12-08T19:26:13Z) - Efficient Online Data Mixing For Language Model Pre-Training [101.45242332613944]
既存のデータ選択方法は、遅くて計算コストのかかるプロセスに悩まされる。
一方、データミキシングは、データポイントをまとめることで、データ選択の複雑さを低減する。
我々は,データ選択とデータ混合の両要素を組み合わせたオンラインデータ混合(ODM)の効率的なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-05T00:42:35Z) - Self-Evolved Diverse Data Sampling for Efficient Instruction Tuning [47.02160072880698]
モデル自体が等しくあるいはそれ以上に効果的であるサブセットを積極的にサンプリングできる自己進化メカニズムを導入します。
データサンプリング技術の鍵は、選択したサブセットの多様性の向上にあります。
3つのデータセットとベンチマークにわたる大規模な実験は、DiverseEvolの有効性を示している。
論文 参考訳(メタデータ) (2023-11-14T14:10:40Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
望ましいデータ選択アルゴリズムは、限られたアノテーション予算の有用性を最大化するために、最も情報性の高いサンプルを効率的に選択することができる。
アクティブな学習手法で表現された現在のアプローチは、通常、時間を要するモデルのトレーニングとバッチデータ選択を繰り返し繰り返す、面倒なパイプラインに従う。
FreeSelは重いバッチ選択プロセスをバイパスし、効率を大幅に改善し、既存のアクティブラーニングメソッドよりも530倍高速である。
論文 参考訳(メタデータ) (2023-09-29T15:50:14Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。