Behavior quantification as the missing link between fields: Tools for
digital psychiatry and their role in the future of neurobiology
- URL: http://arxiv.org/abs/2305.15385v1
- Date: Wed, 24 May 2023 17:45:10 GMT
- Title: Behavior quantification as the missing link between fields: Tools for
digital psychiatry and their role in the future of neurobiology
- Authors: Michaela Ennis
- Abstract summary: Current technologies are an exciting opportunity to improve behavioral characterization.
New capabilities for continuous collection of passive sensor streams, such as phone GPS or smartwatch accelerometers, open avenues of novel questioning.
There is huge potential in what can theoretically be captured by current technologies, but this in itself presents a large computational challenge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The great behavioral heterogeneity observed between individuals with the same
psychiatric disorder and even within one individual over time complicates both
clinical practice and biomedical research. However, modern technologies are an
exciting opportunity to improve behavioral characterization. Existing
psychiatry methods that are qualitative or unscalable, such as patient surveys
or clinical interviews, can now be collected at a greater capacity and analyzed
to produce new quantitative measures. Furthermore, recent capabilities for
continuous collection of passive sensor streams, such as phone GPS or
smartwatch accelerometer, open avenues of novel questioning that were
previously entirely unrealistic. Their temporally dense nature enables a
cohesive study of real-time neural and behavioral signals.
To develop comprehensive neurobiological models of psychiatric disease, it
will be critical to first develop strong methods for behavioral quantification.
There is huge potential in what can theoretically be captured by current
technologies, but this in itself presents a large computational challenge --
one that will necessitate new data processing tools, new machine learning
techniques, and ultimately a shift in how interdisciplinary work is conducted.
In my thesis, I detail research projects that take different perspectives on
digital psychiatry, subsequently tying ideas together with a concluding
discussion on the future of the field. I also provide software infrastructure
where relevant, with extensive documentation.
Major contributions include scientific arguments and proof of concept results
for daily free-form audio journals as an underappreciated psychiatry research
datatype, as well as novel stability theorems and pilot empirical success for a
proposed multi-area recurrent neural network architecture.
Related papers
- Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - EmoScan: Automatic Screening of Depression Symptoms in Romanized Sinhala Tweets [0.0]
This work explores the utilization of Romanized Sinhala social media data to identify individuals at risk of depression.
A machine learning-based framework is presented for the automatic screening of depression symptoms by analyzing language patterns, sentiment, and behavioural cues.
arXiv Detail & Related papers (2024-03-28T10:31:09Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Precision psychiatry: predicting predictability [0.0]
I review ten challenges in the field of precision psychiatry.
Need for studies on real-world populations and realistic clinical outcome definitions.
Consider treatment-related factors such as placebo effects and non-adherence to prescriptions.
arXiv Detail & Related papers (2023-06-21T13:10:46Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - A Rubric for Human-like Agents and NeuroAI [2.749726993052939]
Contributed research ranges widely from mimicking behaviour to testing machine learning methods.
It cannot be assumed nor expected that progress on one of these three goals will automatically translate to progress in others.
This is clarified using examples of weak and strong neuroAI and human-like agents.
arXiv Detail & Related papers (2022-12-08T16:59:40Z) - Multi-site Diagnostic Classification Of Schizophrenia Using 3D CNN On
Aggregated Task-based fMRI Data [0.0]
The mechanisms that underlie the development of schizophrenia, as well as its relapse, symptomatology, and treatment, continue to be a mystery.
The absence of appropriate analytic tools to deal with the variable and complicated nature of schizophrenia may be one of the factors that contribute to the development of this disorder.
Deep learning has the potential to become a powerful tool for understanding the mechanisms that are at the root of schizophrenia.
arXiv Detail & Related papers (2022-10-11T08:12:36Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
We argue that computational models are key tools for elucidating possible functionalities that emerge from network interactions.
Here we review several classes of models including spiking neurons, integrate and fire neurons.
We hope these studies will inform future developments in artificial intelligence algorithms as well as help validate our understanding of brain processes.
arXiv Detail & Related papers (2022-03-29T10:28:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.