Precision psychiatry: predicting predictability
- URL: http://arxiv.org/abs/2306.12462v1
- Date: Wed, 21 Jun 2023 13:10:46 GMT
- Title: Precision psychiatry: predicting predictability
- Authors: Edwin van Dellen
- Abstract summary: I review ten challenges in the field of precision psychiatry.
Need for studies on real-world populations and realistic clinical outcome definitions.
Consider treatment-related factors such as placebo effects and non-adherence to prescriptions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precision psychiatry is an ermerging field that aims to provide
individualized approaches to mental health care. Multivariate analysis and
machine learning are used to create outcome prediction models based on clinical
data such as demographics, symptom assessments, genetic information, and brain
imaging. While much emphasis has been placed on technical innovation, the
complex and varied nature of mental health presents significant challenges to
the successful implementation of these models. From this perspective, I review
ten challenges in the field of precision psychiatry, including the need for
studies on real-world populations and realistic clinical outcome definitions,
consideration of treatment-related factors such as placebo effects and
non-adherence to prescriptions. Fairness, prospective validation in comparison
to current practice and implementation studies of prediction models are other
key issues that are currently understudied. A shift is proposed from
retrospective studies based on linear and static concepts of disease towards
prospective research that considers the importance of contextual factors and
the dynamic and complex nature of mental health.
Related papers
- Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Counterfactual Explanations and Predictive Models to Enhance Clinical
Decision-Making in Schizophrenia using Digital Phenotyping [0.966840768820136]
We propose a machine learning system capable of predicting, detecting, and explaining individual changes in symptoms of patients with Schizophrenia.
The system detects decreases in symptoms using changepoint algorithms and uses counterfactual explanations as a recourse in a simulated continuous monitoring scenario in healthcare.
arXiv Detail & Related papers (2023-06-06T19:33:03Z) - Behavior quantification as the missing link between fields: Tools for
digital psychiatry and their role in the future of neurobiology [0.0]
Current technologies are an exciting opportunity to improve behavioral characterization.
New capabilities for continuous collection of passive sensor streams, such as phone GPS or smartwatch accelerometers, open avenues of novel questioning.
There is huge potential in what can theoretically be captured by current technologies, but this in itself presents a large computational challenge.
arXiv Detail & Related papers (2023-05-24T17:45:10Z) - Promises and pitfalls of deep neural networks in neuroimaging-based
psychiatric research [0.9449650062296824]
Deep neural networks and in particular convolutional neural networks have advanced to a powerful tool in medical imaging.
Here, we first give an introduction into methodological key concepts and resulting methodological promises.
After reviewing recent applications within neuroimaging-based psychiatric research, we discuss current challenges.
arXiv Detail & Related papers (2023-01-20T12:05:59Z) - Bias Reducing Multitask Learning on Mental Health Prediction [18.32551434711739]
There has been an increase in research in developing machine learning models for mental health detection or prediction.
In this work, we aim to perform a fairness analysis and implement a multi-task learning based bias mitigation method on anxiety prediction models.
Our analysis showed that our anxiety prediction base model introduced some bias with regards to age, income, ethnicity, and whether a participant is born in the U.S. or not.
arXiv Detail & Related papers (2022-08-07T02:28:32Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
We introduce an extendable testing framework that evaluates the behavior of clinical outcome models regarding changes of the input.
We show that model behavior varies drastically even when fine-tuned on the same data and that allegedly best-performing models have not always learned the most medically plausible patterns.
arXiv Detail & Related papers (2021-11-30T15:52:04Z) - Computational Mechanism for the Effect of Psychosis Community Treatment:
A Conceptual Review from Neurobiology to Social Interaction [0.0]
We discuss the application of the insights from previous computational models to an important and complex set of evidence-based clinical interventions.
These include coordinated specialty care clinics in early psychosis and assertive community treatment.
We argue that this structure and predictability directly counteract the relatively low precision afforded to sensory information in psychosis.
arXiv Detail & Related papers (2021-03-25T15:35:47Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.