Learning t-doped stabilizer states
- URL: http://arxiv.org/abs/2305.15398v6
- Date: Tue, 21 May 2024 19:50:58 GMT
- Title: Learning t-doped stabilizer states
- Authors: Lorenzo Leone, Salvatore F. E. Oliviero, Alioscia Hamma,
- Abstract summary: We present a learning algorithm aimed at learning states obtained from computational basis states by Clifford circuits doped with a finite number $t$ of $T$-gates.
The algorithm learns an exact tomographic description of $t$-doped stabilizer states in terms of Pauli observables.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a learning algorithm aimed at learning states obtained from computational basis states by Clifford circuits doped with a finite number $t$ of $T$-gates. The algorithm learns an exact tomographic description of $t$-doped stabilizer states in terms of Pauli observables. This is possible because such states are countable and form a discrete set. To tackle the problem, we introduce a novel algebraic framework for $t$-doped stabilizer states, which extends beyond $T$-gates and includes doping with any kind of local non-Clifford gate. The algorithm requires resources of complexity $\text{poly}(n,2^t)$ and exhibits an exponentially small probability of failure.
Related papers
- Quantum State Learning Implies Circuit Lower Bounds [2.2667044928324747]
We establish connections between state tomography, pseudorandomness, quantum state, circuit lower bounds.
We show that even slightly non-trivial quantum state tomography algorithms would lead to new statements about quantum state synthesis.
arXiv Detail & Related papers (2024-05-16T16:46:27Z) - Agnostic Tomography of Stabilizer Product States [0.43123403062068827]
We give an efficient agnostic tomography algorithm for the class $mathcalC$ of $n$-qubit stabilizer product states.
We output a succinct description of a state that approximates at least as well as any state in $mathcalC$.
arXiv Detail & Related papers (2024-04-04T21:39:47Z) - Pseudorandom and Pseudoentangled States from Subset States [49.74460522523316]
A subset state with respect to $S$, a subset of the computational basis, is [ frac1sqrt|S|sum_iin S |irangle.
We show that for any fixed subset size $|S|=s$ such that $s = 2n/omega(mathrmpoly(n))$ and $s=omega(mathrmpoly(n))$, a random subset state is information-theoretically indistinguishable from a Haar random state even provided
arXiv Detail & Related papers (2023-12-23T15:52:46Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates [0.43123403062068827]
We give a pair of algorithms that efficiently learn a quantum state prepared by Clifford gates and $O(log n)$ non-Clifford gates.
Specifically, for an $n$-qubit state $|psirangle$ prepared with at most $t$ non-Clifford gates, our algorithms use $mathsfpoly(n,2t,1/varepsilon)$ time and copies of $|psirangle$ to learn $|psirangle$ to trace distance at most gates.
arXiv Detail & Related papers (2023-05-22T18:49:52Z) - Improved Stabilizer Estimation via Bell Difference Sampling [0.43123403062068827]
We study the complexity of learning quantum states in various models with respect to the stabilizer formalism.
We prove that $Omega(n)$ $T$gates are necessary for any Clifford+$T$ circuit to prepare pseudorandom quantum states.
We show that a modification of the above algorithm runs in time.
arXiv Detail & Related papers (2023-04-27T01:58:28Z) - Layered State Discovery for Incremental Autonomous Exploration [106.37656068276901]
Layered Autonomous Exploration (LAE) is a novel algorithm for AX that attains a sample complexity of $tildemathcalO(LSrightarrow_LAln12(Srightarrow_LAln12(Srightarrow_LAln12(Srightarrow_LAln12(Srightar row_LAln12(Srightarrow_LAln12
arXiv Detail & Related papers (2023-02-07T22:58:12Z) - Reaching Goals is Hard: Settling the Sample Complexity of the Stochastic
Shortest Path [106.37656068276902]
We study the sample complexity of learning an $epsilon$-optimal policy in the Shortest Path (SSP) problem.
We derive complexity bounds when the learner has access to a generative model.
We show that there exists a worst-case SSP instance with $S$ states, $A$ actions, minimum cost $c_min$, and maximum expected cost of the optimal policy over all states $B_star$.
arXiv Detail & Related papers (2022-10-10T18:34:32Z) - Minimal Expected Regret in Linear Quadratic Control [79.81807680370677]
We devise an online learning algorithm and provide guarantees on its expected regret.
This regret at time $T$ is upper bounded (i) by $widetildeO((d_u+d_x)sqrtd_xT)$ when $A$ and $B$ are unknown.
arXiv Detail & Related papers (2021-09-29T14:07:21Z) - Learning quantum circuits of some $T$ gates [10.609715843964263]
It has been unknown how to handle circuits beyond the Clifford group.
We show that the output state of a $T$-depth one circuit textitof full $T$-rank can be represented by a stabilizer pseudomixture.
arXiv Detail & Related papers (2021-06-23T16:43:01Z) - Improved Sample Complexity for Incremental Autonomous Exploration in
MDPs [132.88757893161699]
We learn the set of $epsilon$-optimal goal-conditioned policies attaining all states that are incrementally reachable within $L$ steps.
DisCo is the first algorithm that can return an $epsilon/c_min$-optimal policy for any cost-sensitive shortest-path problem.
arXiv Detail & Related papers (2020-12-29T14:06:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.