論文の概要: Unsupervised Semantic Correspondence Using Stable Diffusion
- arxiv url: http://arxiv.org/abs/2305.15581v1
- Date: Wed, 24 May 2023 21:34:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 18:30:52.456886
- Title: Unsupervised Semantic Correspondence Using Stable Diffusion
- Title(参考訳): 安定拡散を用いた教師なし意味対応
- Authors: Eric Hedlin, Gopal Sharma, Shweta Mahajan, Hossam Isack, Abhishek Kar,
Andrea Tagliasacchi, Kwang Moo Yi
- Abstract要約: 我々は,この意味的知識を拡散モデル内で活用し,意味的対応を見いだせることを示す。
我々はこれらのモデルの迅速な埋め込みを最適化し、関心のある領域に最大限の注意を払う。
我々は、PF-Willow、CUB-200、SPair-71kデータセットにおいて、既存の弱い、または教師なしの手法を著しく上回っている。
- 参考スコア(独自算出の注目度): 27.355330079806027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image diffusion models are now capable of generating images that are
often indistinguishable from real images. To generate such images, these models
must understand the semantics of the objects they are asked to generate. In
this work we show that, without any training, one can leverage this semantic
knowledge within diffusion models to find semantic correspondences -- locations
in multiple images that have the same semantic meaning. Specifically, given an
image, we optimize the prompt embeddings of these models for maximum attention
on the regions of interest. These optimized embeddings capture semantic
information about the location, which can then be transferred to another image.
By doing so we obtain results on par with the strongly supervised state of the
art on the PF-Willow dataset and significantly outperform (20.9% relative for
the SPair-71k dataset) any existing weakly or unsupervised method on PF-Willow,
CUB-200 and SPair-71k datasets.
- Abstract(参考訳): テキスト間拡散モデルは、しばしば実際の画像と区別できない画像を生成することができる。
このようなイメージを生成するには、これらのモデルが生成するオブジェクトのセマンティクスを理解する必要がある。
この研究では、トレーニングなしでは、拡散モデル内でこの意味的知識を活用して、同じ意味的意味を持つ複数の画像における意味的対応を見つけることができることを示します。
具体的には、画像が与えられた場合、これらのモデルの迅速な埋め込みを最適化し、関心のある領域に最大限の注意を払う。
これらの最適化された埋め込みは、位置に関するセマンティック情報をキャプチャし、別の画像に転送することができる。
これにより、PF-Willowデータセット上のアートの強い監督状態と同等の結果を得ることができ、PF-Willowデータセット、CUB-200およびSPair-71kデータセット上の既存の弱いまたは教師なしの手法において、かなり優れ(SPair-71kデータセットに対して20.9%)。
関連論文リスト
- FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
我々は,閉鎖語彙データセットのトレーニングモデルによって伝統的に解決されるイメージセグメンテーションの課題に焦点をあてる。
我々は、ゼロショットのオープン語彙セグメンテーションのために、異なる、比較的小さなオープンソース基盤モデルを活用している。
当社のアプローチ(別名FreeSeg-Diff)は、トレーニングに依存しないもので、Pascal VOCとCOCOデータセットの両方で多くのトレーニングベースのアプローチより優れています。
論文 参考訳(メタデータ) (2024-03-29T10:38:25Z) - ZoDi: Zero-Shot Domain Adaptation with Diffusion-Based Image Transfer [13.956618446530559]
本稿では,ZoDiと呼ばれる拡散モデルに基づくゼロショット領域適応手法を提案する。
まず,原画像の領域を対象領域に転送することで,対象画像の合成にオフ・ザ・シェルフ拡散モデルを用いる。
次に、元の表現でソース画像と合成画像の両方を用いてモデルを訓練し、ドメイン・ロバスト表現を学習する。
論文 参考訳(メタデータ) (2024-03-20T14:58:09Z) - EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
我々は、追加の訓練をすることなく、きめ細かなセグメンテーションマップを生成できる画像セグメンタを開発した。
低次元特徴写像の空間的位置と画像画素間の意味的対応を同定する。
大規模な実験では、生成したセグメンテーションマップがよく説明され、画像の細部を捉えることが示されている。
論文 参考訳(メタデータ) (2024-01-22T07:34:06Z) - Unlocking Pre-trained Image Backbones for Semantic Image Synthesis [29.688029979801577]
本稿では,現実的な画像を生成するセマンティック画像合成のための新しい種類のGAN識別器を提案する。
DP-SIMSをダブした本モデルでは,ADE-20K,COCO-Stuff,Cityscapesの入力ラベルマップと画像品質と一貫性の両面から,最新の結果が得られる。
論文 参考訳(メタデータ) (2023-12-20T09:39:19Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
大規模なデータセットでトレーニングされた拡散モデルは、顕著な品質と多様性のフォトリアリスティックなイメージを合成することができる。
i)拡散モデルの文脈でデータ属性の形式的概念を提供し、(ii)そのような属性を反実的に検証することを可能にする枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-11T08:39:43Z) - Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence [88.00004819064672]
Diffusion Hyperfeaturesは、マルチスケールおよびマルチタイムステップの機能マップをピクセル単位の機能記述子に統合するためのフレームワークである。
提案手法は,SPair-71k実画像ベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-23T17:58:05Z) - Wavelet-based Unsupervised Label-to-Image Translation [9.339522647331334]
本稿では、自己教師付きセグメンテーション損失と全画像ウェーブレットに基づく識別を併用した、SIS(USIS)のための新しいアン教師付きパラダイムを提案する。
3つの挑戦的なデータセットで方法論を検証し、ペアモデルとアンペアモデルのパフォーマンスギャップを橋渡しする能力を実証する。
論文 参考訳(メタデータ) (2023-05-16T17:48:44Z) - Few-shot Semantic Image Synthesis with Class Affinity Transfer [23.471210664024067]
そこで本研究では,大規模なデータセット上でトレーニングされたモデルを利用して,小規模なターゲットデータセット上での学習能力を向上させるトランスファー手法を提案する。
クラス親和性行列は、ターゲットラベルマップと互換性を持たせるために、ソースモデルの第一層として導入される。
セマンティック・セマンティック・シンセサイザー(セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・アーキテクチャー)にアプローチを適用する。
論文 参考訳(メタデータ) (2023-04-05T09:24:45Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。