Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps
- URL: http://arxiv.org/abs/2305.15583v8
- Date: Sun, 16 Jun 2024 15:12:11 GMT
- Title: Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps
- Authors: Mingxiao Li, Tingyu Qu, Ruicong Yao, Wei Sun, Marie-Francine Moens,
- Abstract summary: Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images.
Previous work has attempted to mitigate this issue by perturbing inputs during training.
We propose a novel sampling method that we propose, without retraining the model.
- Score: 23.144083737873263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images. However, their inference process characteristically requires numerous, potentially hundreds, of iterative steps, which could exaggerate the problem of exposure bias due to the training and inference discrepancy. Previous work has attempted to mitigate this issue by perturbing inputs during training, which consequently mandates the retraining of the DPM. In this work, we conduct a systematic study of exposure bias in DPM and, intriguingly, we find that the exposure bias could be alleviated with a novel sampling method that we propose, without retraining the model. We empirically and theoretically show that, during inference, for each backward time step $t$ and corresponding state $\hat{x}_t$, there might exist another time step $t_s$ which exhibits superior coupling with $\hat{x}_t$. Based on this finding, we introduce a sampling method named Time-Shift Sampler. Our framework can be seamlessly integrated to existing sampling algorithms, such as DDPM, DDIM and other high-order solvers, inducing merely minimal additional computations. Experimental results show our method brings significant and consistent improvements in FID scores on different datasets and sampling methods. For example, integrating Time-Shift Sampler to F-PNDM yields a FID=3.88, achieving 44.49\% improvements as compared to F-PNDM, on CIFAR-10 with 10 sampling steps, which is more performant than the vanilla DDIM with 100 sampling steps. Our code is available at https://github.com/Mingxiao-Li/TS-DPM.
Related papers
- DPM-OT: A New Diffusion Probabilistic Model Based on Optimal Transport [26.713392774427653]
DPM-OT is a unified learning framework for fast DPMs with a direct expressway represented by OT map.
It can generate high-quality samples within around 10 function evaluations.
Experiments validate the effectiveness and advantages of DPM-OT in terms of speed and quality.
arXiv Detail & Related papers (2023-07-21T02:28:54Z) - Fast Diffusion Model [122.36693015093041]
Diffusion models (DMs) have been adopted across diverse fields with their abilities in capturing intricate data distributions.
In this paper, we propose a Fast Diffusion Model (FDM) to significantly speed up DMs from a DM optimization perspective.
arXiv Detail & Related papers (2023-06-12T09:38:04Z) - Parallel Sampling of Diffusion Models [76.3124029406809]
Diffusion models are powerful generative models but suffer from slow sampling.
We present ParaDiGMS, a novel method to accelerate the sampling of pretrained diffusion models by denoising multiple steps in parallel.
arXiv Detail & Related papers (2023-05-25T17:59:42Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant attention.
DDPMs generate high-quality samples from complex data distributions by defining an inverse process.
Unlike generative adversarial networks (GANs), the latent space of diffusion models is less interpretable.
In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM)
arXiv Detail & Related papers (2023-05-25T17:25:14Z) - Fast Diffusion Probabilistic Model Sampling through the lens of Backward
Error Analysis [26.907301901503835]
Denoising diffusion probabilistic models (DDPMs) are a class of powerful generative models.
DDPMs generally need hundreds or thousands of sequential function evaluations (steps) of neural networks to generate a sample.
This paper aims to develop a fast sampling method for DDPMs requiring much fewer steps while retaining high sample quality.
arXiv Detail & Related papers (2023-04-22T16:58:47Z) - On Calibrating Diffusion Probabilistic Models [78.75538484265292]
diffusion probabilistic models (DPMs) have achieved promising results in diverse generative tasks.
We propose a simple way for calibrating an arbitrary pretrained DPM, with which the score matching loss can be reduced and the lower bounds of model likelihood can be increased.
Our calibration method is performed only once and the resulting models can be used repeatedly for sampling.
arXiv Detail & Related papers (2023-02-21T14:14:40Z) - Preconditioned Score-based Generative Models [49.88840603798831]
An intuitive acceleration method is to reduce the sampling iterations which however causes severe performance degradation.
We propose a model-agnostic bfem preconditioned diffusion sampling (PDS) method that leverages matrix preconditioning to alleviate the aforementioned problem.
PDS alters the sampling process of a vanilla SGM at marginal extra computation cost, and without model retraining.
arXiv Detail & Related papers (2023-02-13T16:30:53Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples.
DDPMs require hundreds to thousands of iterations to produce final samples.
We propose pseudo numerical methods for diffusion models (PNDMs)
PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup)
arXiv Detail & Related papers (2022-02-20T10:37:52Z) - Denoising Diffusion Implicit Models [117.03720513930335]
We present denoising diffusion implicit models (DDIMs) for iterative implicit probabilistic models with the same training procedure as DDPMs.
DDIMs can produce high quality samples $10 times$ to $50 times$ faster in terms of wall-clock time compared to DDPMs.
arXiv Detail & Related papers (2020-10-06T06:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.