DPM-OT: A New Diffusion Probabilistic Model Based on Optimal Transport
- URL: http://arxiv.org/abs/2307.11308v1
- Date: Fri, 21 Jul 2023 02:28:54 GMT
- Title: DPM-OT: A New Diffusion Probabilistic Model Based on Optimal Transport
- Authors: Zezeng Li, ShengHao Li, Zhanpeng Wang, Na Lei, Zhongxuan Luo, Xianfeng
Gu
- Abstract summary: DPM-OT is a unified learning framework for fast DPMs with a direct expressway represented by OT map.
It can generate high-quality samples within around 10 function evaluations.
Experiments validate the effectiveness and advantages of DPM-OT in terms of speed and quality.
- Score: 26.713392774427653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling from diffusion probabilistic models (DPMs) can be viewed as a
piecewise distribution transformation, which generally requires hundreds or
thousands of steps of the inverse diffusion trajectory to get a high-quality
image. Recent progress in designing fast samplers for DPMs achieves a trade-off
between sampling speed and sample quality by knowledge distillation or
adjusting the variance schedule or the denoising equation. However, it can't be
optimal in both aspects and often suffer from mode mixture in short steps. To
tackle this problem, we innovatively regard inverse diffusion as an optimal
transport (OT) problem between latents at different stages and propose the
DPM-OT, a unified learning framework for fast DPMs with a direct expressway
represented by OT map, which can generate high-quality samples within around 10
function evaluations. By calculating the semi-discrete optimal transport map
between the data latents and the white noise, we obtain an expressway from the
prior distribution to the data distribution, while significantly alleviating
the problem of mode mixture. In addition, we give the error bound of the
proposed method, which theoretically guarantees the stability of the algorithm.
Extensive experiments validate the effectiveness and advantages of DPM-OT in
terms of speed and quality (FID and mode mixture), thus representing an
efficient solution for generative modeling. Source codes are available at
https://github.com/cognaclee/DPM-OT
Related papers
- AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
Existing customization methods require access to multiple reference examples to align pre-trained diffusion probabilistic models with user-provided concepts.
This paper aims to address the challenge of DPM customization when the only available supervision is a differentiable metric defined on the generated contents.
We propose a novel method AdjointDPM, which first generates new samples from diffusion models by solving the corresponding probability-flow ODEs.
It then uses the adjoint sensitivity method to backpropagate the gradients of the loss to the models' parameters.
arXiv Detail & Related papers (2023-07-20T09:06:21Z) - Fast Diffusion Model [122.36693015093041]
Diffusion models (DMs) have been adopted across diverse fields with their abilities in capturing intricate data distributions.
In this paper, we propose a Fast Diffusion Model (FDM) to significantly speed up DMs from a DM optimization perspective.
arXiv Detail & Related papers (2023-06-12T09:38:04Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
Denoising Diffusion Probabilistic Models (DDPM) have recently gained significant attention.
DDPMs generate high-quality samples from complex data distributions by defining an inverse process.
Unlike generative adversarial networks (GANs), the latent space of diffusion models is less interpretable.
In this work, we propose to generalize the denoising diffusion process into an Upsampling Diffusion Probabilistic Model (UDPM)
arXiv Detail & Related papers (2023-05-25T17:25:14Z) - Alleviating Exposure Bias in Diffusion Models through Sampling with Shifted Time Steps [23.144083737873263]
Diffusion Probabilistic Models (DPM) have shown remarkable efficacy in the synthesis of high-quality images.
Previous work has attempted to mitigate this issue by perturbing inputs during training.
We propose a novel sampling method that we propose, without retraining the model.
arXiv Detail & Related papers (2023-05-24T21:39:27Z) - Fast Diffusion Probabilistic Model Sampling through the lens of Backward
Error Analysis [26.907301901503835]
Denoising diffusion probabilistic models (DDPMs) are a class of powerful generative models.
DDPMs generally need hundreds or thousands of sequential function evaluations (steps) of neural networks to generate a sample.
This paper aims to develop a fast sampling method for DDPMs requiring much fewer steps while retaining high sample quality.
arXiv Detail & Related papers (2023-04-22T16:58:47Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
We propose a novel conditional diffusion model by introducing conditions into the forward process.
We use extra latent space to allocate an exclusive diffusion trajectory for each condition based on some shifting rules.
We formulate our method, which we call textbfShiftDDPMs, and provide a unified point of view on existing related methods.
arXiv Detail & Related papers (2023-02-05T12:48:21Z) - Accelerating Diffusion Models via Early Stop of the Diffusion Process [114.48426684994179]
Denoising Diffusion Probabilistic Models (DDPMs) have achieved impressive performance on various generation tasks.
In practice DDPMs often need hundreds even thousands of denoising steps to obtain a high-quality sample.
We propose a principled acceleration strategy, referred to as Early-Stopped DDPM (ES-DDPM), for DDPMs.
arXiv Detail & Related papers (2022-05-25T06:40:09Z) - Pseudo Numerical Methods for Diffusion Models on Manifolds [77.40343577960712]
Denoising Diffusion Probabilistic Models (DDPMs) can generate high-quality samples such as image and audio samples.
DDPMs require hundreds to thousands of iterations to produce final samples.
We propose pseudo numerical methods for diffusion models (PNDMs)
PNDMs can generate higher quality synthetic images with only 50 steps compared with 1000-step DDIMs (20x speedup)
arXiv Detail & Related papers (2022-02-20T10:37:52Z) - Denoising Diffusion Implicit Models [117.03720513930335]
We present denoising diffusion implicit models (DDIMs) for iterative implicit probabilistic models with the same training procedure as DDPMs.
DDIMs can produce high quality samples $10 times$ to $50 times$ faster in terms of wall-clock time compared to DDPMs.
arXiv Detail & Related papers (2020-10-06T06:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.