Learning Lagrangian Fluid Mechanics with E($3$)-Equivariant Graph Neural
Networks
- URL: http://arxiv.org/abs/2305.15603v1
- Date: Wed, 24 May 2023 22:26:38 GMT
- Title: Learning Lagrangian Fluid Mechanics with E($3$)-Equivariant Graph Neural
Networks
- Authors: Artur P. Toshev and Gianluca Galletti and Johannes Brandstetter and
Stefan Adami and Nikolaus A. Adams
- Abstract summary: equivariant graph neural networks have the potential to learn more accurate dynamic-interaction models.
We benchmark two well-studied fluid-flow systems, namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow.
We find that while currently being rather slow to train and evaluate, equivariant models with our proposed history embeddings learn more accurate physical interactions.
- Score: 2.1401663582288144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We contribute to the vastly growing field of machine learning for engineering
systems by demonstrating that equivariant graph neural networks have the
potential to learn more accurate dynamic-interaction models than their
non-equivariant counterparts. We benchmark two well-studied fluid-flow systems,
namely 3D decaying Taylor-Green vortex and 3D reverse Poiseuille flow, and
evaluate the models based on different performance measures, such as kinetic
energy or Sinkhorn distance. In addition, we investigate different embedding
methods of physical-information histories for equivariant models. We find that
while currently being rather slow to train and evaluate, equivariant models
with our proposed history embeddings learn more accurate physical interactions.
Related papers
- Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
We propose Equivariant Graph Neural Operator (EGNO) to directly models dynamics as trajectories instead of just next-step prediction.
EGNO explicitly learns the temporal evolution of 3D dynamics where we formulate the dynamics as a function over time and learn neural operators to approximate it.
Comprehensive experiments in multiple domains, including particle simulations, human motion capture, and molecular dynamics, demonstrate the significantly superior performance of EGNO against existing methods.
arXiv Detail & Related papers (2024-01-19T21:50:32Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - Do We Need an Encoder-Decoder to Model Dynamical Systems on Networks? [18.92828441607381]
We show that embeddings induce a model that fits observations well but simultaneously has incorrect dynamical behaviours.
We propose a simple embedding-free alternative based on parametrising two additive vector-field components.
arXiv Detail & Related papers (2023-05-20T12:41:47Z) - E($3$) Equivariant Graph Neural Networks for Particle-Based Fluid
Mechanics [2.1401663582288144]
We demonstrate that equivariant graph neural networks have the potential to learn more accurate dynamic-interaction models.
We benchmark two well-studied fluid flow systems, namely the 3D decaying Taylor-Green vortex and the 3D reverse Poiseuille flow.
arXiv Detail & Related papers (2023-03-31T21:56:35Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
This paper introduces a new model to learn graph neural networks equivariant to rotations, translations, reflections and permutations called E(n)-Equivariant Graph Neural Networks (EGNNs)
In contrast with existing methods, our work does not require computationally expensive higher-order representations in intermediate layers while it still achieves competitive or better performance.
arXiv Detail & Related papers (2021-02-19T10:25:33Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.