論文の概要: Cross-view Action Recognition Understanding From Exocentric to Egocentric Perspective
- arxiv url: http://arxiv.org/abs/2305.15699v2
- Date: Wed, 15 May 2024 17:31:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-16 18:41:34.595594
- Title: Cross-view Action Recognition Understanding From Exocentric to Egocentric Perspective
- Title(参考訳): 自我的視点から自我的視点へ向けたクロスビュー行動認識
- Authors: Thanh-Dat Truong, Khoa Luu,
- Abstract要約: 本稿では,アクション認識のための新しいクロスビュー学習手法を提案する。
まず,トランスフォーマーの自己注意機構に幾何学的制約を新たに導入する。
そこで本稿では, 自己意識のメカニズムを学習し, 知識を視点間で伝達するために, 自己意識を学習するために, 未確認のクロスビューデータに基づいて学習した, 新たな自己意識の喪失を提案する。
- 参考スコア(独自算出の注目度): 13.776455033015216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding action recognition in egocentric videos has emerged as a vital research topic with numerous practical applications. With the limitation in the scale of egocentric data collection, learning robust deep learning-based action recognition models remains difficult. Transferring knowledge learned from the large-scale exocentric data to the egocentric data is challenging due to the difference in videos across views. Our work introduces a novel cross-view learning approach to action recognition (CVAR) that effectively transfers knowledge from the exocentric to the selfish view. First, we present a novel geometric-based constraint into the self-attention mechanism in Transformer based on analyzing the camera positions between two views. Then, we propose a new cross-view self-attention loss learned on unpaired cross-view data to enforce the self-attention mechanism learning to transfer knowledge across views. Finally, to further improve the performance of our cross-view learning approach, we present the metrics to measure the correlations in videos and attention maps effectively. Experimental results on standard egocentric action recognition benchmarks, i.e., Charades-Ego, EPIC-Kitchens-55, and EPIC-Kitchens-100, have shown our approach's effectiveness and state-of-the-art performance.
- Abstract(参考訳): エゴセントリックビデオにおける行動認識の理解は、多くの実践的応用において重要な研究トピックとして浮上している。
エゴセントリックなデータ収集の規模に制限があるため、堅牢なディープラーニングに基づくアクション認識モデルを学ぶことは依然として困難である。
大規模なエキソセントリックデータから学習した知識をエゴセントリックデータに移すことは、ビュー間のビデオの違いにより困難である。
本研究は,エキソセントリックな視点から利己的な視点へ知識を効果的に伝達する,行動認識(CVAR)のための新しいクロスビュー学習手法を提案する。
まず,2つのビュー間のカメラ位置を解析し,トランスフォーマーの自己保持機構に幾何学的制約を加える。
そこで本稿では, 自己意識のメカニズムを学習し, 知識を視点間で伝達するために, 自己意識を学習するために, 未確認のクロスビューデータに基づいて学習した, 新たな自己意識の喪失を提案する。
最後に,映像と注目マップの相関を効果的に測定するための指標を提示する。
Charades-Ego, EPIC-Kitchens-55, EPIC-Kitchens-100などの標準自己中心型行動認識ベンチマークの実験結果から, 本手法の有効性と最先端性能が示された。
関連論文リスト
- Unlocking Exocentric Video-Language Data for Egocentric Video Representation Learning [80.37314291927889]
EMBEDは、エゴセントリックなビデオ表現学習のための、エゴセントリックなビデオ言語データを変換するために設計された手法である。
エゴセントリックなビデオは、主にクローズアップなハンドオブジェクトのインタラクションを特徴としているのに対し、エゴセントリックなビデオは、人間の活動に対してより広い視点を提供する。
視覚と言語スタイルの転送の両方を適用することで、私たちのフレームワークは新しいエゴセントリックなデータセットを作成します。
論文 参考訳(メタデータ) (2024-08-07T06:10:45Z) - Object Aware Egocentric Online Action Detection [23.504280692701272]
我々は,egocentric-specific presを既存のオンライン行動検出フレームワークに統合するObject-Aware Moduleを紹介した。
私たちの作業は最小限のオーバーヘッドで既存のモデルにシームレスに統合することができ、一貫したパフォーマンス向上をもたらします。
論文 参考訳(メタデータ) (2024-06-03T07:58:40Z) - POV: Prompt-Oriented View-Agnostic Learning for Egocentric Hand-Object
Interaction in the Multi-View World [59.545114016224254]
人間は、手と物体の相互作用の第三者による観察をエゴセントリックな視点に変換するのに長けている。
本稿では,自我中心の動画をほとんど持たない視点適応を実現するための,Prompt-Oriented View-Agnostic Learningフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-09T09:54:44Z) - SVFAP: Self-supervised Video Facial Affect Perceiver [42.16505961654868]
コンピュータビジョンにおける近年の自己教師型学習の成功に触発された本研究では,自己教師型映像表情知覚器(SVFAP)と呼ばれる自己教師型アプローチを導入する。
SVFAPは、監督された方法で直面するジレンマに対処するために、マスク付きビデオオートエンコーディングを利用して、巨大な未ラベルの顔ビデオで自己教師付き事前トレーニングを行う。
提案手法の有効性を検証するため, 動的表情認識, 次元感情認識, パーソナリティ認識を含む3つの下流タスクにまたがる9つのデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2023-12-31T07:44:05Z) - Exo2EgoDVC: Dense Video Captioning of Egocentric Procedural Activities
Using Web Instructional Videos [27.209391862016574]
本稿では,高密度ビデオキャプションのクロスビュー知識伝達のための新しいベンチマークを提案する。
我々は、エゴセントリックな視点で見るWebインストラクショナルビデオのモデルを、エゴセントリックな視点に適応させる。
論文 参考訳(メタデータ) (2023-11-28T02:51:13Z) - Matching Multiple Perspectives for Efficient Representation Learning [0.0]
本稿では,自己教師型学習とマルチパースペクティブマッチング技術を組み合わせたアプローチを提案する。
我々は,同一オブジェクトの複数ビューと多種多様な自己教師付き事前学習アルゴリズムを組み合わせることで,オブジェクト分類性能が向上することを示す。
論文 参考訳(メタデータ) (2022-08-16T10:33:13Z) - Self-Regulated Learning for Egocentric Video Activity Anticipation [147.9783215348252]
自己制御学習(SRL)は、中間表現を連続的に制御し、現在のタイムスタンプのフレームにおける新しい情報を強調する表現を作り出すことを目的としている。
SRLは2つのエゴセントリックなビデオデータセットと2つの第三者のビデオデータセットにおいて、既存の最先端技術よりも大幅に優れています。
論文 参考訳(メタデータ) (2021-11-23T03:29:18Z) - Counterfactual Attention Learning for Fine-Grained Visual Categorization
and Re-identification [101.49122450005869]
本稿では,因果推論に基づくより効果的な注意力学習法を提案する。
具体的には,学習した視覚的注意がネットワーク予測に与える影響を分析する。
本手法は,広範囲の粒度認識タスクにおいて評価する。
論文 参考訳(メタデータ) (2021-08-19T14:53:40Z) - CoCon: Cooperative-Contrastive Learning [52.342936645996765]
自己教師付き視覚表現学習は効率的な映像分析の鍵である。
最近の画像表現の学習の成功は、コントラスト学習がこの課題に取り組むための有望なフレームワークであることを示唆している。
コントラスト学習の協調的バリエーションを導入し、ビュー間の相補的な情報を活用する。
論文 参考訳(メタデータ) (2021-04-30T05:46:02Z) - Learning View-Disentangled Human Pose Representation by Contrastive
Cross-View Mutual Information Maximization [33.36330493757669]
本研究では2次元人間のポーズから、ポーズ依存とビュー依存因子を分離する新しい表現学習手法を提案する。
異なる視点から実行された同じポーズの相互情報を最大化する相互情報(CV-MIM)を用いてネットワークを訓練する。
CV-MIMは、シングルショットのクロスビュー設定において、競合する他の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2020-12-02T18:55:35Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
本稿では,エンコーディング段階に空間情報を加えることで,対照的な目的と強いデータ拡張操作の間の学習の不整合を緩和する効果的な手法を提案する。
提案手法は,視覚表現の効率を向上し,自己指導型視覚表現学習の今後の研究を刺激する鍵となるメッセージを提供する。
論文 参考訳(メタデータ) (2020-11-19T16:26:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。