論文の概要: TransWorldNG: Traffic Simulation via Foundation Model
- arxiv url: http://arxiv.org/abs/2305.15743v1
- Date: Thu, 25 May 2023 05:49:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 17:14:42.727463
- Title: TransWorldNG: Traffic Simulation via Foundation Model
- Title(参考訳): TransWorldNG:基礎モデルによる交通シミュレーション
- Authors: Ding Wang, Xuhong Wang, Liang Chen, Shengyue Yao, Ming Jing, Honghai
Li, Li Li, Shiqiang Bao, Fei-Yue Wang, Yilun Lin
- Abstract要約: データ駆動型アルゴリズムとグラフコンピューティング技術を用いて,実データからトラフィックダイナミクスを学習する交通シミュレータTransWordNGを提案する。
その結果,TransWorldNGは従来のシミュレータよりも現実的なトラフィックパターンを生成できることがわかった。
- 参考スコア(独自算出の注目度): 23.16553424318004
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic simulation is a crucial tool for transportation decision-making and
policy development. However, achieving realistic simulations in the face of the
high dimensionality and heterogeneity of traffic environments is a longstanding
challenge. In this paper, we present TransWordNG, a traffic simulator that uses
Data-driven algorithms and Graph Computing techniques to learn traffic dynamics
from real data. The functionality and structure of TransWorldNG are introduced,
which utilize a foundation model for transportation management and control. The
results demonstrate that TransWorldNG can generate more realistic traffic
patterns compared to traditional simulators. Additionally, TransWorldNG
exhibits better scalability, as it shows linear growth in computation time as
the scenario scale increases. To the best of our knowledge, this is the first
traffic simulator that can automatically learn traffic patterns from real-world
data and efficiently generate accurate and realistic traffic environments.
- Abstract(参考訳): 交通シミュレーションは交通意思決定と政策開発にとって重要なツールである。
しかし、交通環境の高次元と異質性に直面して現実的なシミュレーションを実現することは長年の課題である。
本稿では,データ駆動型アルゴリズムとグラフコンピューティング技術を用いて,実データからトラフィックダイナミクスを学習する交通シミュレータTransWordNGを提案する。
トランスワールドNGの機能と構造を導入し,交通管理・制御の基礎モデルを構築した。
その結果,TransWorldNGは従来のシミュレータよりも現実的なトラフィックパターンを生成できることがわかった。
さらにtransworldngは、シナリオのスケールが大きくなるにつれて計算時間の線形な増加を示すため、スケーラビリティも向上している。
我々の知る限りでは、実世界のデータから交通パターンを自動的に学習し、正確で現実的な交通環境を効率的に生成できる最初の交通シミュレータである。
関連論文リスト
- BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
従来の交通予測手法は、交通トレンドを予測するために、過去の交通データに依存している。
本研究では,交通システムを記述するテキストと生成モデルを組み合わせることで,交通生成にどのように応用できるかを考察する。
本稿では,テキスト・トラフィック生成のための最初の拡散モデルChatTrafficを提案する。
論文 参考訳(メタデータ) (2024-03-08T04:19:56Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - Building Transportation Foundation Model via Generative Graph
Transformer [12.660129805049664]
本稿では,交通シミュレーションの原理を交通予測に統合した交通基盤モデル(TFM)を提案する。
TFMは、移動系アクターの参加行動と相互作用を捉えるために、グラフ構造と動的グラフ生成アルゴリズムを使用する。
このデータ駆動・モデルフリーシミュレーション手法は、構造的複雑性とモデル精度の観点から、従来のシステムで直面する課題に対処する。
論文 参考訳(メタデータ) (2023-05-24T07:34:15Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - BITS: Bi-level Imitation for Traffic Simulation [38.28736985320897]
データ駆動型アプローチを採用し,実世界の走行ログから交通挙動を学習する手法を提案する。
我々は,2つの大規模運転データセットのシナリオを用いて,BITS(Bi-level Imitation for Traffic Simulation)という手法を実証的に検証した。
コアコントリビューションの一環として、さまざまな駆動データセットにまたがるデータフォーマットを統合するソフトウェアツールを開発し、オープンソース化しています。
論文 参考訳(メタデータ) (2022-08-26T02:17:54Z) - Modeling Network-level Traffic Flow Transitions on Sparse Data [6.756998301171409]
本稿では,スパースデータからネットワークレベルのトラフィックフローを予測できるDTIGNNを提案する。
提案手法は最先端の手法よりも優れており,交通機関の意思決定支援に有効であることを示す。
論文 参考訳(メタデータ) (2022-08-13T13:30:35Z) - Learning to Simulate on Sparse Trajectory Data [26.718807213824853]
本稿では,実世界のスパースデータから運転行動をシミュレートする学習問題に対処するための新しいフレームワーク imingail を提案する。
私たちの知る限りでは、行動学習問題に対するデータ疎結合問題に最初に取り組みます。
論文 参考訳(メタデータ) (2021-03-22T13:42:11Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
リアル交通シミュレーションのためのマルチエージェント行動モデルであるTrafficSimを提案する。
特に、暗黙の潜在変数モデルを利用して、共同アクターポリシーをパラメータ化する。
TrafficSimは、多様なベースラインと比較して、より現実的で多様なトラフィックシナリオを生成します。
論文 参考訳(メタデータ) (2021-01-17T00:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。