論文の概要: Building Transportation Foundation Model via Generative Graph
Transformer
- arxiv url: http://arxiv.org/abs/2305.14826v1
- Date: Wed, 24 May 2023 07:34:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 18:41:09.500770
- Title: Building Transportation Foundation Model via Generative Graph
Transformer
- Title(参考訳): 生成グラフ変換による交通基礎モデルの構築
- Authors: Xuhong Wang, Ding Wang, Liang Chen and Yilun Lin
- Abstract要約: 本稿では,交通シミュレーションの原理を交通予測に統合した交通基盤モデル(TFM)を提案する。
TFMは、移動系アクターの参加行動と相互作用を捉えるために、グラフ構造と動的グラフ生成アルゴリズムを使用する。
このデータ駆動・モデルフリーシミュレーション手法は、構造的複雑性とモデル精度の観点から、従来のシステムで直面する課題に対処する。
- 参考スコア(独自算出の注目度): 12.660129805049664
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient traffic management is crucial for maintaining urban mobility,
especially in densely populated areas where congestion, accidents, and delays
can lead to frustrating and expensive commutes. However, existing prediction
methods face challenges in terms of optimizing a single objective and
understanding the complex composition of the transportation system. Moreover,
they lack the ability to understand the macroscopic system and cannot
efficiently utilize big data. In this paper, we propose a novel approach,
Transportation Foundation Model (TFM), which integrates the principles of
traffic simulation into traffic prediction. TFM uses graph structures and
dynamic graph generation algorithms to capture the participatory behavior and
interaction of transportation system actors. This data-driven and model-free
simulation method addresses the challenges faced by traditional systems in
terms of structural complexity and model accuracy and provides a foundation for
solving complex transportation problems with real data. The proposed approach
shows promising results in accurately predicting traffic outcomes in an urban
transportation setting.
- Abstract(参考訳): 都市交通の効率的な管理は、特に渋滞や事故、遅延が発生する人口密集地において、都市交通の維持に不可欠である。
しかし,既存の予測手法では,単一目的を最適化し,交通システムの複雑な構成を理解する上で,課題に直面している。
さらに、マクロシステムを理解する能力が欠如しており、ビッグデータを効率的に利用できない。
本稿では,交通シミュレーションの原理を交通予測に統合した交通基盤モデル(TFM)を提案する。
tfmは、グラフ構造と動的グラフ生成アルゴリズムを使用して、輸送システムアクタの参加行動と相互作用をキャプチャする。
このデータ駆動・モデルフリーシミュレーション手法は、構造的複雑性とモデル精度の観点から従来のシステムで直面する課題に対処し、実データによる複雑な輸送問題を解決する基盤を提供する。
提案手法は,都市交通環境における交通結果を正確に予測する有望な結果を示す。
関連論文リスト
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
従来の交通予測手法は、交通トレンドを予測するために、過去の交通データに依存している。
本研究では,交通システムを記述するテキストと生成モデルを組み合わせることで,交通生成にどのように応用できるかを考察する。
本稿では,テキスト・トラフィック生成のための最初の拡散モデルChatTrafficを提案する。
論文 参考訳(メタデータ) (2024-03-08T04:19:56Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
効果的なシミュレーションの鍵となる要素は、人間の知識と整合した現実的な交通モデルの導入である。
本研究では,現実主義に対する人間の嗜好のニュアンスを捉えることと,多様な交通シミュレーションモデルを統合することの2つの主な課題を明らかにする。
論文 参考訳(メタデータ) (2023-09-01T19:29:53Z) - TransWorldNG: Traffic Simulation via Foundation Model [23.16553424318004]
データ駆動型アルゴリズムとグラフコンピューティング技術を用いて,実データからトラフィックダイナミクスを学習する交通シミュレータTransWordNGを提案する。
その結果,TransWorldNGは従来のシミュレータよりも現実的なトラフィックパターンを生成できることがわかった。
論文 参考訳(メタデータ) (2023-05-25T05:49:30Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - Large-Scale Traffic Congestion Prediction based on Multimodal Fusion and
Representation Mapping [5.893431681364435]
渋滞要因を分析して交通渋滞を判断する上で最も重要な課題の一つである。
交通渋滞を予測するため、従来型および機械学習ベースのモデルが導入されている。
本稿では,畳み込みニューラルネットワークに基づく新しいエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-23T16:07:28Z) - Modeling Network-level Traffic Flow Transitions on Sparse Data [6.756998301171409]
本稿では,スパースデータからネットワークレベルのトラフィックフローを予測できるDTIGNNを提案する。
提案手法は最先端の手法よりも優れており,交通機関の意思決定支援に有効であることを示す。
論文 参考訳(メタデータ) (2022-08-13T13:30:35Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Integrated Traffic Simulation-Prediction System using Neural Networks
with Application to the Los Angeles International Airport Road Network [39.975268616636]
提案システムは,最適化に基づくOD行列生成手法と,トラフィックフローのパターンを介してOD行列を予測するニューラルネットワーク(NN)モデルと,微視的トラフィックシミュレータを含む。
ロサンゼルス国際空港(LAX)中央ターミナルエリア(CTA)の道路ネットワーク上で提案システムをテストする。
論文 参考訳(メタデータ) (2020-08-05T01:41:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。