論文の概要: Maximizing Neutrality in News Ordering
- arxiv url: http://arxiv.org/abs/2305.15790v2
- Date: Sat, 27 May 2023 04:43:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 11:18:35.654357
- Title: Maximizing Neutrality in News Ordering
- Title(参考訳): ニュース注文における中立性の最大化
- Authors: Rishi Advani, Paolo Papotti, Abolfazl Asudeh
- Abstract要約: ニュース記事の発注がオーディエンス認知に与える影響について検討する。
本稿では,サクラニュース注文の検出とニューズ注文における中立性の最大化について紹介する。
実世界における桜の摘み込みの可能性を実証した実験結果と証拠を提示する。
- 参考スコア(独自算出の注目度): 13.017513418036573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The detection of fake news has received increasing attention over the past
few years, but there are more subtle ways of deceiving one's audience. In
addition to the content of news stories, their presentation can also be made
misleading or biased. In this work, we study the impact of the ordering of news
stories on audience perception. We introduce the problems of detecting
cherry-picked news orderings and maximizing neutrality in news orderings. We
prove hardness results and present several algorithms for approximately solving
these problems. Furthermore, we provide extensive experimental results and
present evidence of potential cherry-picking in the real world.
- Abstract(参考訳): 偽ニュースの検出はここ数年で注目を集めていますが、視聴者を欺く方法はもっと微妙です。
ニュース記事の内容に加えて、彼らのプレゼンテーションは誤解を招くか偏見を与えることもできる。
本研究では,ニュース記事の順序付けがオーディエンス知覚に与える影響について検討する。
本稿では,ニュース注文におけるサクラニュース注文の検出と中立性の最大化の問題を紹介する。
難易度を証明し,これらの問題を近似的に解くアルゴリズムをいくつか提示する。
さらに, 実世界における桜の摘み取りの可能性を示すとともに, 広範な実験結果を提供する。
関連論文リスト
- The science of fake news [2.1253496945339148]
フェイクニュースは2016年のアメリカ合衆国大統領選挙で明らかに世界的な問題として浮上した。
これは、インターネットがコンテンツをどのように拡散するか、人々がニュースを処理する方法、そしてどのように相互作用するかをよりよく理解する必要がある。
フェイクニュースの特定を個人がより良く行えるようにし、フェイクニュースに対する注意を減らすためにプラットフォーム内で介入する2つの大きな可能性について論じる。
論文 参考訳(メタデータ) (2023-07-15T23:32:09Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
本稿では,ニュース間のグループ間相互作用を表現するためにハイパーグラフを活用することを提案する。
提案手法は,ラベル付きニュースデータの小さなサブセットであっても,優れた性能を示し,高い性能を維持する。
論文 参考訳(メタデータ) (2022-12-24T00:19:32Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
様々な政治スペクトルの複数のニュース見出しから中立的な要約を生成する新しい課題を提案する。
最も興味深い観察の1つは、生成モデルは、事実的に不正確なコンテンツや検証不可能なコンテンツだけでなく、政治的に偏ったコンテンツにも幻覚を与えることができることである。
論文 参考訳(メタデータ) (2022-04-11T07:06:01Z) - Newsalyze: Effective Communication of Person-Targeting Biases in News
Articles [8.586057042714698]
本稿では,自然言語理解の最先端手法を組み合わせたバイアス識別システムを提案する。
第2に,非専門家のニュース消費者にニュース記事のバイアスを伝えるために,バイアスに敏感な可視化を考案する。
第3に、私たちの主な貢献は、日々のニュース消費を近似した設定においてバイアス認識を測定する大規模なユーザスタディです。
論文 参考訳(メタデータ) (2021-10-18T10:23:19Z) - How to Effectively Identify and Communicate Person-Targeting Media Bias
in Daily News Consumption? [8.586057042714698]
本稿では,コンテンツ分析のマニュアル処理を初めて自動化した,ニュースレコメンデーションのためのインプログレスシステムを提案する。
我々の推薦者は、個々のニュース記事に実際に存在している重要なフレームを検出し、明らかにする。
本研究は,イベントの異なる設定のニュース記事の推薦が,バイアスに対する意識を著しく向上させることを示す。
論文 参考訳(メタデータ) (2021-10-18T10:13:23Z) - Misinfo Belief Frames: A Case Study on Covid & Climate News [49.979419711713795]
読者がニュースの信頼性や誤った情報の影響をどのように認識するかを理解するための形式主義を提案する。
23.5kの見出しに66kの推論データセットであるMisinfo Belief Frames (MBF) corpusを紹介する。
大規模言語モデルを用いて誤情報フレームを予測した結果,機械生成推論がニュース見出しに対する読者の信頼に影響を及ぼすことがわかった。
論文 参考訳(メタデータ) (2021-04-18T09:50:11Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。