LLHR: Low Latency and High Reliability CNN Distributed Inference for
Resource-Constrained UAV Swarms
- URL: http://arxiv.org/abs/2305.15858v1
- Date: Thu, 25 May 2023 08:47:16 GMT
- Title: LLHR: Low Latency and High Reliability CNN Distributed Inference for
Resource-Constrained UAV Swarms
- Authors: Marwan Dhuheir, Aiman Erbad, Sinan Sabeeh
- Abstract summary: Unmanned Aerial Vehicles (UAVs) have shown impressive performance in many critical applications, such as surveillance, search and rescue operations, environmental monitoring, etc.
One promising solution is to divide the inference requests into subtasks that can be distributed among UAVs in a swarm based on the available resources.
Our system model deals with real-time requests, aiming to find the optimal transmission power that guarantees higher reliability and low latency.
- Score: 2.320417845168326
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recently, Unmanned Aerial Vehicles (UAVs) have shown impressive performance
in many critical applications, such as surveillance, search and rescue
operations, environmental monitoring, etc. In many of these applications, the
UAVs capture images as well as other sensory data and then send the data
processing requests to remote servers. Nevertheless, this approach is not
always practical in real-time-based applications due to unstable connections,
limited bandwidth, limited energy, and strict end-to-end latency. One promising
solution is to divide the inference requests into subtasks that can be
distributed among UAVs in a swarm based on the available resources. Moreover,
these tasks create intermediate results that need to be transmitted reliably as
the swarm moves to cover the area. Our system model deals with real-time
requests, aiming to find the optimal transmission power that guarantees higher
reliability and low latency. We formulate the Low Latency and High-Reliability
(LLHR) distributed inference as an optimization problem, and due to the
complexity of the problem, we divide it into three subproblems. In the first
subproblem, we find the optimal transmit power of the connected UAVs with
guaranteed transmission reliability. The second subproblem aims to find the
optimal positions of the UAVs in the grid, while the last subproblem finds the
optimal placement of the CNN layers in the available UAVs. We conduct extensive
simulations and compare our work to two baseline models demonstrating that our
model outperforms the competing models.
Related papers
- Diffusion-based Auction Mechanism for Efficient Resource Management in 6G-enabled Vehicular Metaverses [57.010829427434516]
In 6G-enable Vehicular Metaverses, vehicles are represented by Vehicle Twins (VTs), which serve as digital replicas of physical vehicles.
VT tasks are resource-intensive and need to be offloaded to ground Base Stations (BSs) for fast processing.
We propose a learning-based Modified Second-Bid (MSB) auction mechanism to optimize resource allocation between ground BSs and UAVs.
arXiv Detail & Related papers (2024-11-01T04:34:54Z) - Federated Learning in UAV-Enhanced Networks: Joint Coverage and
Convergence Time Optimization [16.265792031520945]
Federated learning (FL) involves several devices that collaboratively train a shared model without transferring their local data.
FL reduces the communication overhead, making it a promising learning method in UAV-enhanced wireless networks with scarce energy resources.
Despite the potential, implementing FL in UAV-enhanced networks is challenging, as conventional UAV placement methods that maximize coverage increase the FL delay.
arXiv Detail & Related papers (2023-08-31T17:50:54Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
Federated edge learning (FEEL) enables privacy-preserving model training through periodic communication between edge devices and the server.
Unmanned Aerial Vehicle (UAV)mounted edge devices are particularly advantageous for FEEL due to their flexibility and mobility in efficient data collection.
arXiv Detail & Related papers (2023-06-05T16:01:33Z) - Deep Reinforcement Learning for Trajectory Path Planning and Distributed
Inference in Resource-Constrained UAV Swarms [6.649753747542209]
This work aims to design a model for distributed collaborative inference requests and path planning in a UAV swarm.
The formulated problem is NP-hard so finding the optimal solution is quite complex.
We conduct extensive simulations and compare our results to the-state-of-the-art studies demonstrating that our model outperforms the competing models.
arXiv Detail & Related papers (2022-12-21T17:16:42Z) - Efficient Real-Time Image Recognition Using Collaborative Swarm of UAVs
and Convolutional Networks [9.449650062296824]
We present a strategy aiming at distributing inference requests to a swarm of resource-constrained UAVs that classifies captured images on-board.
We formulate the model as an optimization problem that minimizes the latency between acquiring images and making the final decisions.
We introduce an online solution, namely DistInference, to find the layers placement strategy that gives the best latency among the available UAVs.
arXiv Detail & Related papers (2021-07-09T19:47:02Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
Unmanned Aerial Vehicles (UAVs) have attracted great interest in the last few years owing to their ability to cover large areas and access difficult and hazardous target zones.
Thanks to the advancements in computer vision and machine learning, UAVs are being adopted for a broad range of solutions and applications.
Deep Neural Networks (DNNs) are progressing toward deeper and complex models that prevent them from being executed on-board.
arXiv Detail & Related papers (2021-05-23T20:19:43Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
We design a navigation policy for multiple unmanned aerial vehicles (UAVs) where mobile base stations (BSs) are deployed.
We incorporate different contextual information such as energy and age of information (AoI) constraints to ensure the data freshness at the ground BS.
By applying the proposed trained model, an effective real-time trajectory policy for the UAV-BSs captures the observable network states over time.
arXiv Detail & Related papers (2020-02-21T07:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.