論文の概要: MTCue: Learning Zero-Shot Control of Extra-Textual Attributes by
Leveraging Unstructured Context in Neural Machine Translation
- arxiv url: http://arxiv.org/abs/2305.15904v1
- Date: Thu, 25 May 2023 10:06:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 15:55:59.169207
- Title: MTCue: Learning Zero-Shot Control of Extra-Textual Attributes by
Leveraging Unstructured Context in Neural Machine Translation
- Title(参考訳): MTCue: ニューラルネットワーク翻訳における非構造化コンテキストの活用による外部テキスト属性のゼロショット制御学習
- Authors: Sebastian Vincent and Robert Flynn and Carolina Scarton
- Abstract要約: これは、すべてのコンテキスト(離散変数を含む)をテキストとして解釈する新しいニューラルネットワーク翻訳(NMT)フレームワークである。
MTCueはコンテキストの抽象的な表現を学び、異なるデータ設定間で転送可能性を実現する。
MTCueは英語のテキストの翻訳において「タグ付け」ベースラインを大幅に上回っている。
- 参考スコア(独自算出の注目度): 3.703767478524629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient utilisation of both intra- and extra-textual context remains one of
the critical gaps between machine and human translation. Existing research has
primarily focused on providing individual, well-defined types of context in
translation, such as the surrounding text or discrete external variables like
the speaker's gender. This work introduces MTCue, a novel neural machine
translation (NMT) framework that interprets all context (including discrete
variables) as text. MTCue learns an abstract representation of context,
enabling transferability across different data settings and leveraging similar
attributes in low-resource scenarios. With a focus on a dialogue domain with
access to document and metadata context, we extensively evaluate MTCue in four
language pairs in both translation directions. Our framework demonstrates
significant improvements in translation quality over a parameter-matched
non-contextual baseline, as measured by BLEU (+0.88) and Comet (+1.58).
Moreover, MTCue significantly outperforms a "tagging" baseline at translating
English text. Analysis reveals that the context encoder of MTCue learns a
representation space that organises context based on specific attributes, such
as formality, enabling effective zero-shot control. Pre-training on context
embeddings also improves MTCue's few-shot performance compared to the "tagging"
baseline. Finally, an ablation study conducted on model components and
contextual variables further supports the robustness of MTCue for context-based
NMT.
- Abstract(参考訳): 機械と人間の翻訳の間の重要なギャップの1つは、テキスト内およびテキスト外コンテキストの効率的な活用である。
既存の研究は主に、周囲のテキストや話者の性別のような離散的な外部変数といった、個々の、明確に定義された文脈の翻訳を提供することに重点を置いている。
これは、すべてのコンテキスト(離散変数を含む)をテキストとして解釈する新しいニューラルネットワーク翻訳(NMT)フレームワークである。
MTCueはコンテキストの抽象的な表現を学び、異なるデータ設定間での転送可能性を可能にし、低リソースのシナリオで同様の属性を活用する。
文書とメタデータのコンテキストにアクセス可能な対話領域に着目して、4つの言語対のMCCueを両翻訳方向で広範囲に評価する。
bleu (+0.88) とcomet (+1.58) で測定したパラメータマッチングされた非コンテキストベースラインに対する翻訳品質の大幅な改善を示す。
さらに、MSCueは英語のテキストの翻訳において「タグ付け」ベースラインを大幅に上回る。
MTCueのコンテキストエンコーダは、形式性などの特定の属性に基づいてコンテキストを整理する表現空間を学習し、効果的なゼロショット制御を可能にする。
コンテキスト埋め込みの事前トレーニングは、"タグ"ベースラインと比較して、mtcueの数少ないパフォーマンスも向上している。
最後に、モデル成分と文脈変数に関するアブレーション研究は、文脈ベースNMTにおけるMCCueの堅牢性をさらに支援している。
関連論文リスト
- A Case Study on Context-Aware Neural Machine Translation with Multi-Task Learning [49.62044186504516]
文書レベルのニューラルネットワーク翻訳(DocNMT)では、コンテクストやソース文のエンコーディングにおいてマルチエンコーダアプローチが一般的である。
近年の研究では、コンテキストエンコーダがノイズを発生させ、コンテキストの選択に頑健なモデルを実現することが示されている。
本稿では、マルチタスク学習(MTL)を通してコンテキストエンコーディングを明示的にモデル化することで、コンテキスト選択に敏感なモデルを実現することにより、この観察をさらに検討する。
論文 参考訳(メタデータ) (2024-07-03T12:50:49Z) - Context-aware Neural Machine Translation for English-Japanese Business
Scene Dialogues [14.043741721036543]
本稿では,日英ビジネス対話翻訳における現在のニューラル・マシン・トランスフォーメーション(NMT)モデルの性能向上について検討する。
本稿では,話者のターンやシーンタイプなどの外部情報を符号化する新しいコンテキストトークンを提案する。
我々は,先行文と外部文脈(CXMIは文脈サイズを増大させる)の両方をモデルに利用し,敬語翻訳のより焦点を絞った分析を行う。
論文 参考訳(メタデータ) (2023-11-20T18:06:03Z) - Improving Long Context Document-Level Machine Translation [51.359400776242786]
翻訳の一貫性と凝集性を改善するために、ニューラルネットワーク翻訳(NMT)のための文書レベルのコンテキストが不可欠である。
文書レベルのNMTに関する多くの著作が出版されているが、ほとんどの作品では局所的な文脈に制限されている。
本稿では、メモリ消費を同時に低減しつつ、シーケンスの最も関連性の高い部分に注意を集中させる制約付注意変種を提案する。
論文 参考訳(メタデータ) (2023-06-08T13:28:48Z) - Discourse Centric Evaluation of Machine Translation with a Densely
Annotated Parallel Corpus [82.07304301996562]
本稿では,江らが導入した大規模並列コーパスBWBに基づいて,リッチな談話アノテーションを用いた新しいデータセットを提案する。
ソース言語とターゲット言語の談話構造と類似点と相違点について検討する。
我々はMT出力が人間の翻訳と基本的に異なることを発見した。
論文 参考訳(メタデータ) (2023-05-18T17:36:41Z) - Reference-less Analysis of Context Specificity in Translation with
Personalised Language Models [3.527589066359829]
本研究は、リッチキャラクタとフィルムアノテーションがいかにパーソナライズ言語モデル(LM)に活用できるかを考察する。
非文脈モデルと比較して、難易度を最大6.5%削減するために、リッチな文脈情報を活用するLMを構築している。
我々の領域における専門翻訳の文脈特化度は、文脈機械翻訳モデルによりよりよく保存できることを示す。
論文 参考訳(メタデータ) (2023-03-29T12:19:23Z) - HanoiT: Enhancing Context-aware Translation via Selective Context [95.93730812799798]
コンテキスト対応ニューラルネットワーク翻訳は、文書レベルのコンテキストを使用して翻訳品質を改善することを目的としている。
無関係または自明な単語は、いくつかのノイズをもたらし、モデルが現在の文と補助的な文脈の関係を学ぶのを邪魔する可能性がある。
そこで本稿では,階層的選択機構を備えたエンド・ツー・エンドのエンコーダ・デコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-17T12:07:13Z) - Learning to Generalize to More: Continuous Semantic Augmentation for
Neural Machine Translation [50.54059385277964]
CsaNMT(Continuous Semantic Augmentation)と呼ばれる新しいデータ拡張パラダイムを提案する。
CsaNMTは各トレーニングインスタンスを、同じ意味の下で適切なリテラル式をカバーできる隣接領域で拡張する。
論文 参考訳(メタデータ) (2022-04-14T08:16:28Z) - SMDT: Selective Memory-Augmented Neural Document Translation [53.4627288890316]
本稿では,文脈の広い仮説空間を含む文書を扱うために,選択的メモリ拡張型ニューラル文書翻訳モデルを提案する。
トレーニングコーパスから類似のバイリンガル文ペアを抽出し,グローバルな文脈を拡大する。
ローカルなコンテキストと多様なグローバルなコンテキストをキャプチャする選択的なメカニズムで、2ストリームのアテンションモデルを拡張する。
論文 参考訳(メタデータ) (2022-01-05T14:23:30Z) - Contrastive Learning for Context-aware Neural Machine TranslationUsing
Coreference Information [14.671424999873812]
ソース文と文脈文のコア参照に基づく新しいデータ拡張とコントラスト学習方式であるCorefCLを提案する。
コンテキスト文で検出されたコア参照の言及を自動的に破損させることで、CorefCLはコア参照の不整合に敏感なモデルをトレーニングすることができる。
実験では,英語・ドイツ語・韓国語タスクの比較モデルのBLEUを一貫して改善した。
論文 参考訳(メタデータ) (2021-09-13T05:18:47Z) - Modeling Bilingual Conversational Characteristics for Neural Chat
Translation [24.94474722693084]
上記の特性をモデル化して会話テキストの翻訳品質を高めることを目的としている。
我々は、ベンチマークデータセットBConTrasT(英語-ドイツ語)と、BMELD(英語-中国語)という自己コンパイルバイリンガル対話コーパスに対するアプローチを評価した。
我々のアプローチは,強いベースラインよりも高いマージンで性能を向上し,BLEUとTERの観点から,最先端のコンテキスト対応NMTモデルを大幅に上回っている。
論文 参考訳(メタデータ) (2021-07-23T12:23:34Z) - Simultaneous Machine Translation with Visual Context [42.88121241096681]
同時機械翻訳(SiMT)は、連続的な入力テキストストリームを低レイテンシで最高の品質で別の言語に変換することを目的としている。
我々は、様々なマルチモーダルアプローチと視覚的特徴が最先端のSiMTフレームワークに与える影響を分析する。
論文 参考訳(メタデータ) (2020-09-15T18:19:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。