Image Segmentation: Inducing graph-based learning
- URL: http://arxiv.org/abs/2501.03765v2
- Date: Sun, 19 Jan 2025 11:34:58 GMT
- Title: Image Segmentation: Inducing graph-based learning
- Authors: Aryan Singh, Pepijn Van de Ven, CiarĂ¡n Eising, Patrick Denny,
- Abstract summary: This study explores the potential of graph neural networks (GNNs) to enhance semantic segmentation across diverse image modalities.
GNNs explicitly model relationships between image regions by constructing and operating on a graph representation of the image features.
Our analysis demonstrates the versatility of GNNs in addressing diverse segmentation challenges and highlights their potential to improve segmentation accuracy in various applications.
- Score: 4.499833362998488
- License:
- Abstract: This study explores the potential of graph neural networks (GNNs) to enhance semantic segmentation across diverse image modalities. We evaluate the effectiveness of a novel GNN-based U-Net architecture on three distinct datasets: PascalVOC, a standard benchmark for natural image segmentation, WoodScape, a challenging dataset of fisheye images commonly used in autonomous driving, introducing significant geometric distortions; and ISIC2016, a dataset of dermoscopic images for skin lesion segmentation. We compare our proposed UNet-GNN model against established convolutional neural networks (CNNs) based segmentation models, including U-Net and U-Net++, as well as the transformer-based SwinUNet. Unlike these methods, which primarily rely on local convolutional operations or global self-attention, GNNs explicitly model relationships between image regions by constructing and operating on a graph representation of the image features. This approach allows the model to capture long-range dependencies and complex spatial relationships, which we hypothesize will be particularly beneficial for handling geometric distortions present in fisheye imagery and capturing intricate boundaries in medical images. Our analysis demonstrates the versatility of GNNs in addressing diverse segmentation challenges and highlights their potential to improve segmentation accuracy in various applications, including autonomous driving and medical image analysis.
Related papers
- Improved Image Classification with Manifold Neural Networks [13.02854405679453]
Graph Neural Networks (GNNs) have gained popularity in various learning tasks.
In this paper, we explore GNNs' potential in general data representations, especially in the image domain.
We train a GNN to predict node labels corresponding to the image labels in the classification task, and leverage convergence of GNNs to analyze GNN generalization.
arXiv Detail & Related papers (2024-09-19T19:55:33Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
We introduce a novel model that combines GNNs and edge convolution, leveraging the interconnectedness of RGB channel feature values to strongly represent connections between crucial graph nodes.
Our proposed model performs on par with state-of-the-art Deep Neural Networks (DNNs) but does so with 1000 times fewer parameters, resulting in reduced training time and data requirements.
arXiv Detail & Related papers (2023-07-24T13:39:21Z) - NexToU: Efficient Topology-Aware U-Net for Medical Image Segmentation [3.8336080345323227]
CNN and Transformer variants have emerged as the leading medical image segmentation backbones.
We propose NexToU, a novel hybrid architecture for medical image segmentation.
Our method consistently outperforms other state-of-the-art (SOTA) architectures.
arXiv Detail & Related papers (2023-05-25T10:18:57Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Improving anatomical plausibility in medical image segmentation via
hybrid graph neural networks: applications to chest x-ray analysis [3.3382651833270587]
We introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures.
A novel image-to-graph skip connection layer allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy.
arXiv Detail & Related papers (2022-03-21T13:37:23Z) - RSI-Net: Two-Stream Deep Neural Network Integrating GCN and Atrous CNN
for Semantic Segmentation of High-resolution Remote Sensing Images [3.468780866037609]
Two-stream deep neural network for semantic segmentation of remote sensing images (RSI-Net) is proposed in this paper.
Experiments are implemented on the Vaihingen, Potsdam and Gaofen RSI datasets.
Results demonstrate the superior performance of RSI-Net in terms of overall accuracy, F1 score and kappa coefficient when compared with six state-of-the-art RSI semantic segmentation methods.
arXiv Detail & Related papers (2021-09-19T15:57:20Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.