How to Turn Your Knowledge Graph Embeddings into Generative Models
- URL: http://arxiv.org/abs/2305.15944v3
- Date: Tue, 16 Jan 2024 10:53:05 GMT
- Title: How to Turn Your Knowledge Graph Embeddings into Generative Models
- Authors: Lorenzo Loconte, Nicola Di Mauro, Robert Peharz, Antonio Vergari
- Abstract summary: Some of the most successful knowledge graph embedding (KGE) models for link prediction can be interpreted as energy-based models.
This work re-interprets the score functions of these KGEs as circuits.
Our interpretation comes with little or no loss of performance for link prediction.
- Score: 10.466244652188777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some of the most successful knowledge graph embedding (KGE) models for link
prediction -- CP, RESCAL, TuckER, ComplEx -- can be interpreted as energy-based
models. Under this perspective they are not amenable for exact
maximum-likelihood estimation (MLE), sampling and struggle to integrate logical
constraints. This work re-interprets the score functions of these KGEs as
circuits -- constrained computational graphs allowing efficient
marginalisation. Then, we design two recipes to obtain efficient generative
circuit models by either restricting their activations to be non-negative or
squaring their outputs. Our interpretation comes with little or no loss of
performance for link prediction, while the circuits framework unlocks exact
learning by MLE, efficient sampling of new triples, and guarantee that logical
constraints are satisfied by design. Furthermore, our models scale more
gracefully than the original KGEs on graphs with millions of entities.
Related papers
- Combining Optimal Transport and Embedding-Based Approaches for More Expressiveness in Unsupervised Graph Alignment [19.145556156889064]
Unsupervised graph alignment finds the one-to-one node correspondence between a pair of attributed graphs by only exploiting graph structure and node features.
We propose a principled approach to combine their advantages motivated by theoretical analysis of model expressiveness.
We are the first to guarantee the one-to-one matching constraint by reducing the problem to maximum weight matching.
arXiv Detail & Related papers (2024-06-19T04:57:35Z) - A Simple and Scalable Representation for Graph Generation [13.111214838770296]
We introduce a new, simple, and scalable graph representation named gap encoded edge list (GEEL) that has a small representation size that aligns with the number of edges.
GEEL significantly reduces the vocabulary size by incorporating the gap encoding and bandwidth restriction schemes.
We conduct a comprehensive evaluation across ten non-attributed and two molecular graph generation tasks, demonstrating the effectiveness of GEEL.
arXiv Detail & Related papers (2023-12-04T03:43:26Z) - A Comprehensive Study on Knowledge Graph Embedding over Relational
Patterns Based on Rule Learning [49.09125100268454]
Knowledge Graph Embedding (KGE) has proven to be an effective approach to solving the Knowledge Completion Graph (KGC) task.
Relational patterns are an important factor in the performance of KGE models.
We introduce a training-free method to enhance KGE models' performance over various relational patterns.
arXiv Detail & Related papers (2023-08-15T17:30:57Z) - Studying How to Efficiently and Effectively Guide Models with Explanations [52.498055901649025]
'Model guidance' is the idea of regularizing the models' explanations to ensure that they are "right for the right reasons"
We conduct an in-depth evaluation across various loss functions, attribution methods, models, and 'guidance depths' on the PASCAL VOC 2007 and MS COCO 2014 datasets.
Specifically, we guide the models via bounding box annotations, which are much cheaper to obtain than the commonly used segmentation masks.
arXiv Detail & Related papers (2023-03-21T15:34:50Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - CascadER: Cross-Modal Cascading for Knowledge Graph Link Prediction [22.96768147978534]
We propose a tiered ranking architecture CascadER to maintain the ranking accuracy of full ensembling while improving efficiency considerably.
CascadER uses LMs to rerank the outputs of more efficient base KGEs, relying on an adaptive subset selection scheme aimed at invoking the LMs minimally while maximizing accuracy gain over the KGE.
Our empirical analyses reveal that diversity of models across modalities and preservation of individual models' confidence signals help explain the effectiveness of CascadER.
arXiv Detail & Related papers (2022-05-16T22:55:45Z) - CAKE: A Scalable Commonsense-Aware Framework For Multi-View Knowledge
Graph Completion [43.172893405453266]
Previous knowledge graph embedding techniques suffer from invalid negative sampling and the uncertainty of fact-view link prediction.
We propose a novel and scalable Commonsense-Aware Knowledge Embedding (CAKE) framework to automatically extract commonsense from factual triples with entity concepts.
arXiv Detail & Related papers (2022-02-25T03:30:22Z) - Efficient Non-Sampling Knowledge Graph Embedding [21.074002550338296]
We propose a new framework for KG embedding -- Efficient Non-Sampling Knowledge Graph Embedding (NS-KGE)
The basic idea is to consider all of the negative instances in the KG for model learning, and thus to avoid negative sampling.
Experiments on benchmark datasets show that our NS-KGE framework can achieve a better performance on efficiency and accuracy over traditional negative sampling based models.
arXiv Detail & Related papers (2021-04-21T23:36:39Z) - RelWalk A Latent Variable Model Approach to Knowledge Graph Embedding [50.010601631982425]
This paper extends the random walk model (Arora et al., 2016a) of word embeddings to Knowledge Graph Embeddings (KGEs)
We derive a scoring function that evaluates the strength of a relation R between two entities h (head) and t (tail)
We propose a learning objective motivated by the theoretical analysis to learn KGEs from a given knowledge graph.
arXiv Detail & Related papers (2021-01-25T13:31:29Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.