論文の概要: ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs
- arxiv url: http://arxiv.org/abs/2305.15964v5
- Date: Wed, 17 Apr 2024 15:01:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 19:50:03.815359
- Title: ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs
- Title(参考訳): ChatCAD+:LLMを用いたユニバーサルで信頼性の高いインタラクティブCADを目指して
- Authors: Zihao Zhao, Sheng Wang, Jinchen Gu, Yitao Zhu, Lanzhuju Mei, Zixu Zhuang, Zhiming Cui, Qian Wang, Dinggang Shen,
- Abstract要約: ChatCAD+は高品質な医療レポートを生成し、信頼できる医療アドバイスを提供するツールである。
信頼性レポート生成モジュールは、医療画像を解釈し、高品質な医療レポートを生成することができる。
Reliable Interactionモジュールは、信頼できる医療アドバイスを提供するために、信頼できる医療ウェブサイトからの最新の情報を活用する。
- 参考スコア(独自算出の注目度): 48.11532667875847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Computer-Aided Diagnosis (CAD) with Large Language Models (LLMs) presents a promising frontier in clinical applications, notably in automating diagnostic processes akin to those performed by radiologists and providing consultations similar to a virtual family doctor. Despite the promising potential of this integration, current works face at least two limitations: (1) From the perspective of a radiologist, existing studies typically have a restricted scope of applicable imaging domains, failing to meet the diagnostic needs of different patients. Also, the insufficient diagnostic capability of LLMs further undermine the quality and reliability of the generated medical reports. (2) Current LLMs lack the requisite depth in medical expertise, rendering them less effective as virtual family doctors due to the potential unreliability of the advice provided during patient consultations. To address these limitations, we introduce ChatCAD+, to be universal and reliable. Specifically, it is featured by two main modules: (1) Reliable Report Generation and (2) Reliable Interaction. The Reliable Report Generation module is capable of interpreting medical images from diverse domains and generate high-quality medical reports via our proposed hierarchical in-context learning. Concurrently, the interaction module leverages up-to-date information from reputable medical websites to provide reliable medical advice. Together, these designed modules synergize to closely align with the expertise of human medical professionals, offering enhanced consistency and reliability for interpretation and advice. The source code is available at https://github.com/zhaozh10/ChatCAD.
- Abstract(参考訳): コンピュータ支援診断 (CAD) とLarge Language Models (LLMs) の統合は臨床応用において有望なフロンティアを示し、特に放射線科医が行う診断プロセスの自動化や、仮想ファミリードクターと似た相談を行っている。
この統合の有望な可能性にもかかわらず、現在の研究は少なくとも2つの制限に直面している: (1) 放射線技師の観点からすると、既存の研究は通常、適用可能な画像領域の範囲を限定しており、異なる患者の診断のニーズを満たすことができない。
また, LLMの診断能力の不足により, 医療報告の品質や信頼性が損なわれている。
2)現在のLSMは,専門知識が欠如しているため,患者相談におけるアドバイスの不信感から,仮想的な家族医師としての役割が低下している。
これらの制限に対処するため、我々はChatCAD+を導入し、普遍的で信頼性が高いものにした。
具体的には、(1)信頼性のあるレポート生成と(2)信頼性のあるインタラクションの2つの主要なモジュールによって特徴付けられる。
Reliable Report Generationモジュールは、さまざまなドメインの医療画像を解釈し、提案した階層型インコンテキスト学習を通じて高品質な医療レポートを生成することができる。
同時に、対話モジュールは、信頼できる医療アドバイスを提供するために、信頼できる医療ウェブサイトからの最新の情報を活用する。
これらの設計されたモジュールは、人間の医療専門家の専門知識と密に連携し、解釈とアドバイスのための一貫性と信頼性を向上する。
ソースコードはhttps://github.com/zhaozh10/ChatCADで入手できる。
関連論文リスト
- D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.874099055563228]
ドメイン固有の対話型無線支援ツールD-Raxを提案する。
我々は胸部X線(CXR)画像の会話解析を強化し,放射線学的報告を支援する。
オープン・エンド・会話とクローズド・会話の双方において,反応の統計的に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-07-02T18:43:10Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
本研究は,医師のエミュレートによる計画能力の向上を目的としたLCMに基づく診断システムを提案する。
実際の患者電子カルテデータを利用して,仮想患者と医師とのシミュレーション対話を構築した。
論文 参考訳(メタデータ) (2024-04-04T06:16:35Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
本稿では,知識向上と臨床パスウェイ符号化フレームワークを用いた医療対話について紹介する。
このフレームワークは、医療知識グラフを介して外部知識増強モジュールと、医療機関および医師の行動を介して、内部臨床経路をコードする。
論文 参考訳(メタデータ) (2024-03-11T10:57:45Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Generative Large Language Models are autonomous practitioners of
evidence-based medicine [27.229179922424063]
EBM(エビデンス・ベース・メディカル)は、臨床医学の基礎であり、臨床医が継続的に知識を更新し、患者医療に最良の臨床証拠を適用する必要がある。
EBMの実践は、医学研究の急速な進歩による課題に直面し、臨床医に情報過負荷をもたらす。
人工知能(AI)の統合、特にジェネレーティブ・大型言語モデル(LLM)は、この複雑さを管理するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-01-05T15:09:57Z) - ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using
Large Language Models [53.73049253535025]
大規模言語モデル(LLM)は、最近臨床応用においてその可能性を実証している。
本稿では,LLMを医療画像CADネットワークに統合する手法を提案する。
LLMの医用領域知識と論理的推論の強みを、既存の医用画像CADモデルの視覚理解能力と融合させることが目的である。
論文 参考訳(メタデータ) (2023-02-14T18:54:06Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
本稿では、医療表現学習と予測分析のための、エンドツーエンドの堅牢なトランスフォーマーベースのソリューション、患者旅行の相互統合、医療オントロジー(MIMO)を提案する。
論文 参考訳(メタデータ) (2021-07-20T07:04:52Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。