論文の概要: ProMRVL-CAD: Proactive Dialogue System with Multi-Round Vision-Language Interactions for Computer-Aided Diagnosis
- arxiv url: http://arxiv.org/abs/2502.10620v1
- Date: Sat, 15 Feb 2025 01:14:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:12:04.206629
- Title: ProMRVL-CAD: Proactive Dialogue System with Multi-Round Vision-Language Interactions for Computer-Aided Diagnosis
- Title(参考訳): ProMRVL-CAD:コンピュータ支援診断のための多方向視覚・言語相互作用を用いたプロアクティブ対話システム
- Authors: Xueshen Li, Xinlong Hou, Ziyi Huang, Yu Gan,
- Abstract要約: コンピュータ支援診断(ProMRVL-CAD)のためのLLMベースの対話システム、すなわちプロアクティブな多ラウンド視覚言語インタラクションを開発する。
提案した ProMRVL-CAD システムでは,患者に対して,知識グラフをレコメンデーションシステムに統合することにより,一定の医療アクセスを提供することができる。
- 参考スコア(独自算出の注目度): 0.7430974817507225
- License:
- Abstract: Recent advancements in large language models (LLMs) have demonstrated extraordinary comprehension capabilities with remarkable breakthroughs on various vision-language tasks. However, the application of LLMs in generating reliable medical diagnostic reports remains in the early stages. Currently, medical LLMs typically feature a passive interaction model where doctors respond to patient queries with little or no involvement in analyzing medical images. In contrast, some ChatBots simply respond to predefined queries based on visual inputs, lacking interactive dialogue or consideration of medical history. As such, there is a gap between LLM-generated patient-ChatBot interactions and those occurring in actual patient-doctor consultations. To bridge this gap, we develop an LLM-based dialogue system, namely proactive multi-round vision-language interactions for computer-aided diagnosis (ProMRVL-CAD), to generate patient-friendly disease diagnostic reports. The proposed ProMRVL-CAD system allows proactive dialogue to provide patients with constant and reliable medical access via an integration of knowledge graph into a recommendation system. Specifically, we devise two generators: a Proactive Question Generator (Pro-Q Gen) to generate proactive questions that guide the diagnostic procedure and a Multi-Vision Patient-Text Diagnostic Report Generator (MVP-DR Gen) to produce high-quality diagnostic reports. Evaluating two real-world publicly available datasets, MIMIC-CXR and IU-Xray, our model has better quality in generating medical reports. We further demonstrate the performance of ProMRVL achieves robust under the scenarios with low image quality. Moreover, we have created a synthetic medical dialogue dataset that simulates proactive diagnostic interactions between patients and doctors, serving as a valuable resource for training LLM.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、様々な視覚言語タスクにおいて顕著なブレークスルーを伴う驚くべき理解能力を示している。
しかし, 信頼性診断報告作成におけるLSMの応用は, 初期段階に留まっている。
現在、医療用LLMは、典型的には、医師が医療画像の分析にほとんど、あるいは全く関与せずに患者の問い合わせに応答する受動的相互作用モデルを備えている。
対照的に、ChatBotの中には、対話的な対話や医療史の考慮が欠如している、視覚的な入力に基づく事前定義されたクエリに応答するものもある。
したがって、LCMが生成する患者-チャットボット相互作用と実際の患者-医師の相談で発生する相互作用との間にはギャップがある。
このギャップを埋めるため,コンピュータ支援診断(ProMRVL-CAD)のための多言語多言語対話システムを開発した。
提案した ProMRVL-CAD システムでは,患者に対して,知識グラフをレコメンデーションシステムに統合することにより,一定の医療アクセスを提供することができる。
具体的には, プロアクティブ質問生成装置 (Pro-Q Gen) と, 診断手順を導くプロアクティブ質問生成装置 (MVP-DR Gen) と, 高品質な診断レポートを生成するためのマルチビジョン患者テキスト診断レポート生成装置 (MVP-DR Gen) の2つのジェネレータを考案した。
実際に利用可能なMIMIC-CXRとIU-Xrayの2つのデータセットを評価することにより,医療報告の生成精度が向上する。
さらに,画像品質の低いシナリオにおいて,ProMRVLの性能が堅牢であることを示す。
さらに, 患者と医師の積極的診断相互作用をシミュレートした医用対話データセットを作成した。
関連論文リスト
- A Two-Stage Proactive Dialogue Generator for Efficient Clinical Information Collection Using Large Language Model [0.6926413609535759]
患者情報収集作業を自動化する診断対話システムを提案する。
医療史と会話のロジックを活用することで、会話エージェントは複数回にわたる臨床クエリを作成できる。
実世界の医療会話データセットを用いた実験結果から,本モデルが実際の医師の会話スタイルを模倣した臨床クエリを生成できることが示唆された。
論文 参考訳(メタデータ) (2024-10-02T19:32:11Z) - D-Rax: Domain-specific Radiologic assistant leveraging multi-modal data and eXpert model predictions [8.50767187405446]
ドメイン固有の対話型無線支援ツールD-Raxを提案する。
我々は胸部X線(CXR)画像の会話解析を強化し,放射線学的報告を支援する。
オープン・エンド・会話とクローズド・会話の双方において,反応の統計的に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-07-02T18:43:10Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - Conversational Disease Diagnosis via External Planner-Controlled Large Language Models [18.93345199841588]
本研究は,医師のエミュレートによる計画能力の向上を目的としたLCMに基づく診断システムを提案する。
実際の患者電子カルテデータを利用して,仮想患者と医師とのシミュレーション対話を構築した。
論文 参考訳(メタデータ) (2024-04-04T06:16:35Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - ChatCAD+: Towards a Universal and Reliable Interactive CAD using LLMs [48.11532667875847]
ChatCAD+は高品質な医療レポートを生成し、信頼できる医療アドバイスを提供するツールである。
信頼性レポート生成モジュールは、医療画像を解釈し、高品質な医療レポートを生成することができる。
Reliable Interactionモジュールは、信頼できる医療アドバイスを提供するために、信頼できる医療ウェブサイトからの最新の情報を活用する。
論文 参考訳(メタデータ) (2023-05-25T12:03:31Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - MedDG: An Entity-Centric Medical Consultation Dataset for Entity-Aware
Medical Dialogue Generation [86.38736781043109]
MedDGという12種類の消化器疾患に関連する大規模医用対話データセットを構築し,公開する。
MedDGデータセットに基づく2種類の医療対話タスクを提案する。1つは次のエンティティ予測であり、もう1つは医師の反応生成である。
実験結果から,プレトレイン言語モデルと他のベースラインは,両方のタスクに苦戦し,データセットの性能が劣ることがわかった。
論文 参考訳(メタデータ) (2020-10-15T03:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。