Vortex spin in a superfluid
- URL: http://arxiv.org/abs/2305.16016v1
- Date: Thu, 25 May 2023 12:56:13 GMT
- Title: Vortex spin in a superfluid
- Authors: Emil G\'enetay Johansen and Tapio Simula
- Abstract summary: General relativity predicts that curvature of spacetime induces spin rotations on a parallel transported particle.
We consider a quantised vortex embedded in a two-dimensional superfluid Bose--Einstein condensate.
We show that such a vortex behaves dynamically like a charged particle with a spin in a gravitational field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: General relativity predicts that the curvature of spacetime induces spin
rotations on a parallel transported particle. We deploy Unruh's analogue
gravity picture and consider a quantised vortex embedded in a two-dimensional
superfluid Bose--Einstein condensate. We show that such a vortex behaves
dynamically like a charged particle with a spin in a gravitational field. The
existence of a vortex spin in a superfluid complements Onsager's prediction of
the quantisation of circulation, and is suggestive of potential quantum
technology applications of rotating superfluids.
Related papers
- Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Intrinsic quantum dynamics of particles in brane gravity [0.0]
We show that the stability of particle trajectories on the brane gives us the Bohr--Sommerfeld quantization condition.
The particle's motion along the extra dimension allows us to formulate a geometrical version of the uncertainty principle.
We show that the particle's motion along the extra dimension yields a quantized energy spectrum for bound states.
arXiv Detail & Related papers (2023-03-20T13:41:07Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Simulating superluminal propagation of Dirac particles using trapped
ions [0.0]
We propose to simulate the movement of a Dirac particle propagating with a superluminal velocity caused by the emergent Alcubierre warp drive spacetime using trapped ions.
We demonstrate that the platform allows observing the tilted lightcone that manifests as a superluminal velocity, which is in agreement with the prediction of general relativity.
The present scheme can be extended to simulate the Dirac equation in other exotic curved spacetimes.
arXiv Detail & Related papers (2021-10-04T02:21:06Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Stochastic Quantization on Lorentzian Manifolds [0.0]
We embed Nelson's quantization in the Schwartz-Meyer second order geometry framework.
We derive differential equations for massive spin-0 test particles charged under scalar potentials, vector potentials and gravity.
arXiv Detail & Related papers (2021-01-29T13:03:09Z) - Collisions of false-vacuum bubble walls in a quantum spin chain [5.191136746295222]
We simulate, using nonperturbative methods, the real-time dynamics of small bubbles of "false vacuum" in a quantum spin chain near criticality.
We consider bubbles whose walls are kink and antikink quasiparticle excitations, so that wall collisions are kink-antikink scattering events.
arXiv Detail & Related papers (2020-12-14T04:01:56Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.