AI Techniques in the Microservices Life-Cycle: A Survey
- URL: http://arxiv.org/abs/2305.16092v1
- Date: Thu, 25 May 2023 14:24:37 GMT
- Title: AI Techniques in the Microservices Life-Cycle: A Survey
- Authors: Sergio Moreschini, Shahrzad Pour, Ivan Lanese, Daniel Balouek-Thomert,
Justus Bogner, Xiaozhou Li, Fabiano Pecorelli, Jacopo Soldani, Eddy Truyen,
Davide Taibi
- Abstract summary: In microservice systems, functionalities are provided by loosely coupled, small services, each focusing on a specific business capability.
Building a system according to the architectural style brings a number of challenges, mainly related to how different are deployed and coordinated.
In this paper, we provide a survey about how techniques in the area of Artificial Intelligence have been used to tackle these challenges.
- Score: 10.06596283248616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Microservices is a popular architectural style for the development of
distributed software, with an emphasis on modularity, scalability, and
flexibility. Indeed, in microservice systems, functionalities are provided by
loosely coupled, small services, each focusing on a specific business
capability. Building a system according to the microservices architectural
style brings a number of challenges, mainly related to how the different
microservices are deployed and coordinated and how they interact. In this
paper, we provide a survey about how techniques in the area of Artificial
Intelligence have been used to tackle these challenges.
Related papers
- Software Design Pattern Model and Data Structure Algorithm Abilities on Microservices Architecture Design in High-tech Enterprises [0.4532517021515834]
This study investigates the impact of software design model capabilities and data structure algorithm abilities on architecture design within enterprises.
The findings reveal that organizations emphasizing robust design models and efficient algorithms achieve superior scalability, performance, and flexibility in their architecture.
arXiv Detail & Related papers (2024-11-05T07:26:53Z) - A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Insights on Microservice Architecture Through the Eyes of Industry Practitioners [39.58317527488534]
The adoption of microservice architecture has seen a considerable upswing in recent years.
This study investigates the motivations, activities, and challenges associated with migrating from monolithic legacy systems.
arXiv Detail & Related papers (2024-08-19T21:56:58Z) - Fostering Microservice Maintainability Assurance through a Comprehensive Framework [0.0]
This project aims to offer maintainability assurance for microservice-based systems.
It introduces an automated assessment framework tailored to microservice architecture.
The framework addresses various levels, from artifacts to holistic views of system characteristics.
arXiv Detail & Related papers (2024-07-23T22:45:29Z) - Microservices-based Software Systems Reengineering: State-of-the-Art and Future Directions [17.094721366340735]
Designing software compatible with cloud-based Microservice Architectures (MSAs) is vital due to the performance, scalability, and availability limitations.
We provide a comprehensive survey of current research into ways of identifying services in systems that can be redeployed as Static, dynamic, and hybrid approaches have been explored.
arXiv Detail & Related papers (2024-07-18T21:59:05Z) - Systematic Mapping of Monolithic Applications to Microservices
Architecture [2.608935407927351]
It discusses the advantages of and the challenges that organizations face when transitioning from a monolithic system.
It presents a case study of a financial application and proposed techniques for identifying on monolithic systems using domain-driven development concepts.
arXiv Detail & Related papers (2023-09-07T15:47:11Z) - Policy Architectures for Compositional Generalization in Control [71.61675703776628]
We introduce a framework for modeling entity-based compositional structure in tasks.
Our policies are flexible and can be trained end-to-end without requiring any action primitives.
arXiv Detail & Related papers (2022-03-10T06:44:24Z) - Video-based Facial Micro-Expression Analysis: A Survey of Datasets,
Features and Algorithms [52.58031087639394]
micro-expressions are involuntary and transient facial expressions.
They can provide important information in a broad range of applications such as lie detection, criminal detection, etc.
Since micro-expressions are transient and of low intensity, their detection and recognition is difficult and relies heavily on expert experiences.
arXiv Detail & Related papers (2022-01-30T05:14:13Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
We propose a principled approach, rooted in differentiable neural architecture search, to automatically define branching structures in a multi-task neural network.
We show that our approach consistently finds high-performing branching structures within limited resource budgets.
arXiv Detail & Related papers (2020-08-24T09:49:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.