論文の概要: Scan and Snap: Understanding Training Dynamics and Token Composition in
1-layer Transformer
- arxiv url: http://arxiv.org/abs/2305.16380v4
- Date: Mon, 30 Oct 2023 17:32:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 02:15:17.300751
- Title: Scan and Snap: Understanding Training Dynamics and Token Composition in
1-layer Transformer
- Title(参考訳): Scan and Snap: 1層トランスにおけるトレーニングダイナミクスとトークン構成の理解
- Authors: Yuandong Tian, Yiping Wang, Beidi Chen, Simon Du
- Abstract要約: トランスフォーマーアーキテクチャは、複数の研究領域で顕著な性能を示している。
我々は、次のトークン予測タスクのためのSGDトレーニングダイナミクスを解析する。
自己注意が自己識別型スキャンアルゴリズムとして機能することを証明する。
- 参考スコア(独自算出の注目度): 37.37547759817417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer architecture has shown impressive performance in multiple
research domains and has become the backbone of many neural network models.
However, there is limited understanding on how it works. In particular, with a
simple predictive loss, how the representation emerges from the gradient
\emph{training dynamics} remains a mystery. In this paper, for 1-layer
transformer with one self-attention layer plus one decoder layer, we analyze
its SGD training dynamics for the task of next token prediction in a
mathematically rigorous manner. We open the black box of the dynamic process of
how the self-attention layer combines input tokens, and reveal the nature of
underlying inductive bias. More specifically, with the assumption (a) no
positional encoding, (b) long input sequence, and (c) the decoder layer learns
faster than the self-attention layer, we prove that self-attention acts as a
\emph{discriminative scanning algorithm}: starting from uniform attention, it
gradually attends more to distinct key tokens for a specific next token to be
predicted, and pays less attention to common key tokens that occur across
different next tokens. Among distinct tokens, it progressively drops attention
weights, following the order of low to high co-occurrence between the key and
the query token in the training set. Interestingly, this procedure does not
lead to winner-takes-all, but decelerates due to a \emph{phase transition} that
is controllable by the learning rates of the two layers, leaving (almost) fixed
token combination. We verify this \textbf{\emph{scan and snap}} dynamics on
synthetic and real-world data (WikiText).
- Abstract(参考訳): トランスフォーマーアーキテクチャは、複数の研究領域で顕著なパフォーマンスを示し、多くのニューラルネットワークモデルのバックボーンとなっている。
しかし、その仕組みについては理解が限られている。
特に、単純な予測損失により、勾配 \emph{training dynamics} からどのように表現が現れるかは謎のままである。
本稿では, 1層自己着脱層と1層デコーダ層を有する1層変圧器について,次のトークン予測タスクに対するsgdトレーニングダイナミクスを数学的に厳密に解析する。
自己注意層が入力トークンを結合する方法の動的プロセスのブラックボックスを開き、基礎となる帰納バイアスの性質を明らかにする。
より具体的に言うと
(a)位置符号化なし。
(b)長い入力シーケンス、及び
(c)デコーダ層は自己アテンション層よりも早く学習し、自己アテンションが \emph{discriminative scan algorithm} として機能することを証明する。
異なるトークンの中では、トレーニングセット内のキーとクエリトークンの間の低いから高い共起の順序に従って、徐々に注目の重みを減らします。
興味深いことに、この手順は勝者の獲得に繋がらないが、2つの層の学習速度によって制御され、(ほとんど)固定されたトークンの組み合わせを残している 'emph{phase transition} によって減速する。
合成および実世界データ(wikitext)上でのこの \textbf{\emph{scan and snap}} ダイナミクスを検証する。
関連論文リスト
- FIRP: Faster LLM inference via future intermediate representation prediction [54.897493351694195]
FIRPはデコードステップ毎に1つではなく複数のトークンを生成する。
いくつかのモデルとデータセットで1.9x-3xのスピードアップ比を示す広範な実験を行った。
論文 参考訳(メタデータ) (2024-10-27T15:53:49Z) - Looking Beyond The Top-1: Transformers Determine Top Tokens In Order [13.032106683136394]
トップ1予測が修正された後、トランスフォーマーが層内で行う計算を解析する。
これらの飽和事象は、対応するトークンのランクの順に発生する。
この逐次飽和に対するタスク遷移のメカニズムを提案する。
論文 参考訳(メタデータ) (2024-10-26T16:00:38Z) - ToSA: Token Selective Attention for Efficient Vision Transformers [50.13756218204456]
ToSAはトークン選択型アテンションアプローチで、コンバータ層をスキップできるトークンだけでなく、参加する必要のあるトークンも識別できる。
ToSAは,ImageNet分類ベンチマークの精度を維持しながら,計算コストを大幅に削減できることを示す。
論文 参考訳(メタデータ) (2024-06-13T05:17:21Z) - Token-Label Alignment for Vision Transformers [93.58540411138164]
データ混合戦略(例えば、CutMix)は、畳み込みニューラルネットワーク(CNN)の性能を大幅に改善する能力を示している。
我々は,データ混合戦略の可能性を抑制するトークン変動現象を同定する。
本稿では,各トークンのラベルを保持するために,変換されたトークンと元のトークンとの対応をトレースするトークンラベルアライメント(TL-Align)手法を提案する。
論文 参考訳(メタデータ) (2022-10-12T17:54:32Z) - DynamicViT: Efficient Vision Transformers with Dynamic Token
Sparsification [134.9393799043401]
入力に基づいて冗長なトークンを抽出する動的トークンスペーシフィケーションフレームワークを提案する。
入力トークンの66%を階層的にプルーニングすることで,FLOPの31%37%を大幅に削減し,スループットを40%以上向上する。
DynamicViTモデルは、ImageNetの最先端CNNやビジョントランスフォーマーと比較して、非常に競争力のある複雑性/精度のトレードオフを実現することができる。
論文 参考訳(メタデータ) (2021-06-03T17:57:41Z) - KVT: k-NN Attention for Boosting Vision Transformers [44.189475770152185]
我々は、視力変換器の強化を目的とした、k-NNアテンションと呼ばれるスパースアテンション方式を提案する。
提案したk-NNアテンションは、畳み込み操作を導入することなくCNNの局所バイアスを自然に継承する。
理論的にも経験的にも、$k$-NNの注意力は入力トークンからのノイズの蒸留やトレーニングの高速化に有効である。
論文 参考訳(メタデータ) (2021-05-28T06:49:10Z) - Fast End-to-End Speech Recognition via a Non-Autoregressive Model and
Cross-Modal Knowledge Transferring from BERT [72.93855288283059]
LASO (Listen Attentively, and Spell Once) と呼ばれる非自動回帰音声認識モデルを提案する。
モデルは、エンコーダ、デコーダ、および位置依存集合体(PDS)からなる。
論文 参考訳(メタデータ) (2021-02-15T15:18:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。