Approaching Collateral Optimization for NISQ and Quantum-Inspired
Computing
- URL: http://arxiv.org/abs/2305.16395v2
- Date: Tue, 19 Dec 2023 10:15:41 GMT
- Title: Approaching Collateral Optimization for NISQ and Quantum-Inspired
Computing
- Authors: Megan Giron and Georgios Korpas and Waqas Parvaiz and Prashant Malik
and Johannes Aspman
- Abstract summary: Collateral optimization refers to the systematic allocation of financial assets to satisfy obligations or secure transactions.
One of the common objectives is to minimise the cost of collateral required to mitigate the risk associated with a particular transaction or a portfolio of transactions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collateral optimization refers to the systematic allocation of financial
assets to satisfy obligations or secure transactions, while simultaneously
minimizing costs and optimizing the usage of available resources. {This
involves assessing number of characteristics, such as cost of funding and
quality of the underlying assets to ascertain the optimal collateral quantity
to be posted to cover exposure arising from a given transaction or a set of
transactions. One of the common objectives is to minimise the cost of
collateral required to mitigate the risk associated with a particular
transaction or a portfolio of transactions while ensuring sufficient protection
for the involved parties}. Often, this results in a large-scale combinatorial
optimization problem. In this study, we initially present a Mixed Integer
Linear Programming (MILP) formulation for the collateral optimization problem,
followed by a Quadratic Unconstrained Binary optimization (QUBO) formulation in
order to pave the way towards approaching the problem in a hybrid-quantum and
NISQ-ready way. We conduct local computational small-scale tests using various
Software Development Kits (SDKs) and discuss the behavior of our formulations
as well as the potential for performance enhancements. We further survey the
recent literature that proposes alternative ways to attack combinatorial
optimization problems suitable for collateral optimization.
Related papers
- Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Robust personalized pricing under uncertainty of purchase probabilities [2.9061423802698565]
We propose a robust optimization model for personalized pricing that accounts for the uncertainty of predicted purchase probabilities.
We also develop a Lagrangian decomposition algorithm combined with line search to efficiently find high-quality solutions for large-scale optimization problems.
arXiv Detail & Related papers (2024-07-22T02:36:19Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - A Novel Knapsack-based Financial Portfolio Optimization using Quantum Approximate Optimization Algorithm [2.6603181502541986]
We propose a method that uses the quantum computing capabilities of the quantum walk mixer with the quantum approximate optimization algorithm (QAOA) to address the challenges presented by the NP-hard problem.
Our study successfully achieves the approximate ratio of the portfolio optimization technique using a circuit layer of p >= 3, compared to the classical best-known solution of the knapsack problem.
arXiv Detail & Related papers (2024-02-11T08:20:26Z) - Diversifying Investments and Maximizing Sharpe Ratio: a novel QUBO
formulation [0.0]
We propose a new QUBO formulation for the task described and provide the mathematical details and required assumptions.
We derive results via the available QUBO solvers, as well as discussing the behaviour of Hybrid approaches to tackle large scale problems in the term.
arXiv Detail & Related papers (2023-02-23T19:15:44Z) - Quantization for decentralized learning under subspace constraints [61.59416703323886]
We consider decentralized optimization problems where agents have individual cost functions to minimize subject to subspace constraints.
We propose and study an adaptive decentralized strategy where the agents employ differential randomized quantizers to compress their estimates.
The analysis shows that, under some general conditions on the quantization noise, the strategy is stable both in terms of mean-square error and average bit rate.
arXiv Detail & Related papers (2022-09-16T09:38:38Z) - Interactive Recommendations for Optimal Allocations in Markets with
Constraints [12.580391999838128]
We propose an interactive framework where the system provider can enhance the quality of recommendations to the users.
We employ an integrated approach using techniques from collaborative filtering, bandits, and optimal resource allocation.
Empirical studies on synthetic matrix and real-world data also demonstrate the effectiveness and performance of our approach.
arXiv Detail & Related papers (2022-07-08T22:16:51Z) - Comparing Classical-Quantum Portfolio Optimization with Enhanced
Constraints [0.0]
We show how to add fundamental analysis to the portfolio optimization problem, adding in asset-specific and global constraints based on chosen balance sheet metrics.
We analyze the current state-of-the-art algorithms for solving such a problem using D-Wave's Quantum Processor and compare the quality of the solutions obtained to commercially-available optimization software.
arXiv Detail & Related papers (2022-03-09T17:46:32Z) - Safe Online Bid Optimization with Return-On-Investment and Budget
Constraints subject to Uncertainty [87.81197574939355]
We study the nature of both the optimization and learning problems.
We provide an algorithm, namely GCB, guaranteeing sublinear regret at the cost of a potentially linear number of constraints violations.
More interestingly, we provide an algorithm, namely GCB_safe(psi,phi), guaranteeing both sublinear pseudo-regret and safety w.h.p. at the cost of accepting tolerances psi and phi.
arXiv Detail & Related papers (2022-01-18T17:24:20Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.