論文の概要: GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
- arxiv url: http://arxiv.org/abs/2305.16404v1
- Date: Thu, 25 May 2023 18:11:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 18:35:01.625655
- Title: GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
- Title(参考訳): GrowSP: 3次元点雲の教師なしセマンティックセマンティックセグメンテーション
- Authors: Zihui Zhang, Bo Yang, Bing Wang, Bo Li
- Abstract要約: そこで本研究では,3次元シーンの各点における複雑なセマンティッククラスを識別するために,GrowSPと呼ばれる教師なしの最初の手法を提案する。
提案手法は,(1)入力点雲から点ごとの特徴を学習する特徴抽出器,(2)スーパーポイントのサイズを徐々に拡大するスーパーポイントコンストラクタ,(3)スーパーポイントを意味的要素にグループ化するセマンティックプリミティブクラスタリングモジュールからなる。
提案手法を複数のデータセット上で広範囲に評価し,教師なしベースラインに対して優れた性能を示し,従来の完全教師付きポイントネットにアプローチした。
- 参考スコア(独自算出の注目度): 12.597717463575478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of 3D semantic segmentation from raw point clouds.
Unlike existing methods which primarily rely on a large amount of human
annotations for training neural networks, we propose the first purely
unsupervised method, called GrowSP, to successfully identify complex semantic
classes for every point in 3D scenes, without needing any type of human labels
or pretrained models. The key to our approach is to discover 3D semantic
elements via progressive growing of superpoints. Our method consists of three
major components, 1) the feature extractor to learn per-point features from
input point clouds, 2) the superpoint constructor to progressively grow the
sizes of superpoints, and 3) the semantic primitive clustering module to group
superpoints into semantic elements for the final semantic segmentation. We
extensively evaluate our method on multiple datasets, demonstrating superior
performance over all unsupervised baselines and approaching the classic
fully-supervised PointNet. We hope our work could inspire more advanced methods
for unsupervised 3D semantic learning.
- Abstract(参考訳): 原点雲からの3次元セマンティックセグメンテーションの問題について検討する。
ニューラルネットワークのトレーニングに大量の人的アノテーションを頼りにしている既存の手法とは違って、我々はGrowSPと呼ばれる、人間のラベルや事前訓練されたモデルを必要としない、3Dシーンのすべてのポイントにおける複雑な意味クラスを識別する、最初の純粋に教師なしの手法を提案する。
我々のアプローチの鍵は、スーパーポイントの進行的成長を通して3次元意味要素を発見することである。
提案手法は3つの主成分からなる。
1)入力点クラウドからポイント単位の特徴を学習する特徴抽出器
2) スーパーポイントコンストラクタは、スーパーポイントのサイズを段階的に拡大し、
3) セマンティックプリミティブクラスタリングモジュールは、スーパーポイントを最終的なセマンティックセグメンテーションのためのセマンティック要素にグループ化する。
提案手法を複数のデータセット上で広範囲に評価し,教師なしベースラインに対して優れた性能を示し,従来の完全教師付きポイントネットにアプローチした。
私たちの研究が、教師なしの3d意味学習のより高度な手法を刺激できることを願っています。
関連論文リスト
- PointDC:Unsupervised Semantic Segmentation of 3D Point Clouds via
Cross-modal Distillation and Super-Voxel Clustering [32.18716273358168]
我々は、ポイントクラウドの完全な教師なしセマンティックセマンティックセグメンテーションの最初の試みを行う。
本稿では,上記の問題に対処する2つのステップからなる新しいフレームワークであるPointDCを提案する。
PointDCは、従来の最先端の教師なし手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-04-18T12:58:21Z) - PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models [56.324516906160234]
一般化可能な3D部分分割は重要だが、ビジョンとロボティクスでは難しい。
本稿では,事前学習した画像言語モデルGLIPを利用して,3次元点雲の低ショット部分分割法を提案する。
我々は2Dから3Dへの豊富な知識を、ポイントクラウドレンダリングにおけるGLIPに基づく部分検出と新しい2D-to-3Dラベルリフトアルゴリズムにより転送する。
論文 参考訳(メタデータ) (2022-12-03T06:59:01Z) - Learning Inter-Superpoint Affinity for Weakly Supervised 3D Instance
Segmentation [10.968271388503986]
本稿では,各インスタンスに1点だけアノテートすることで,優れたパフォーマンスを実現する3Dインスタンスセグメンテーションフレームワークを提案する。
本手法は,弱教師付きポイントクラウドインスタンスセグメンテーションタスクにおける最先端性能を実現し,完全教師付き手法よりも優れる。
論文 参考訳(メタデータ) (2022-10-11T15:22:22Z) - Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level
Supervision [65.19589997822155]
我々は3Dポイントクラウドのポイントレベルのセマンティクスをバウンディングボックスレベルの監視で学習するために,Box2Segと呼ばれるニューラルアーキテクチャを導入する。
提案するネットワークは,安価な,あるいは既定のバウンディングボックスレベルのアノテーションやサブクラウドレベルのタグでトレーニング可能であることを示す。
論文 参考訳(メタデータ) (2022-01-09T09:07:48Z) - Point Discriminative Learning for Unsupervised Representation Learning
on 3D Point Clouds [54.31515001741987]
3次元点雲上での教師なし表現学習のための点識別学習法を提案する。
我々は、中間レベルとグローバルレベルの特徴に新しい点識別損失を課すことにより、これを達成した。
提案手法は強力な表現を学習し,新しい最先端性能を実現する。
論文 参考訳(メタデータ) (2021-08-04T15:11:48Z) - Dense Supervision Propagation for Weakly Supervised Semantic Segmentation on 3D Point Clouds [59.63231842439687]
意味点クラウドセグメンテーションネットワークをトレーニングする。
同様の特徴を伝達し、2つのサンプルにまたがる勾配を再現するクロスサンプル機能再配置モジュールを提案する。
ラベルの10%と1%しか持たない弱教師付き手法では、完全教師付き手法と互換性のある結果が得られる。
論文 参考訳(メタデータ) (2021-07-23T14:34:57Z) - SCSS-Net: Superpoint Constrained Semi-supervised Segmentation Network
for 3D Indoor Scenes [6.3364439467281315]
本稿では,SCSS-Net という名称の3次元点雲に対するスーパーポイント制約付き半教師付きセグメンテーションネットワークを提案する。
具体的には、ラベルのない点群から予測される擬似ラベルを自己学習に利用し、幾何ベースおよび色に基づく領域成長アルゴリズムによって生成されたスーパーポイントを組み合わせて、疑似ラベルを低信頼で修正・削除する。
論文 参考訳(メタデータ) (2021-07-08T04:43:21Z) - SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network [21.818744369503197]
SSPC-Net と呼ばれる半監視型セマンティックポイントクラウドセグメンテーションネットワークを提案する。
注釈付き3D点からラベルのない点のラベルを推定することにより意味分節ネットワークを訓練する。
本手法は,注釈付き3D点の少ない半教師付きセグメンテーション法よりも優れた性能が得られる。
論文 参考訳(メタデータ) (2021-04-16T02:37:27Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
本稿では,新しい注意型マルチプロトタイプトランスダクティブ・ショットポイント・クラウドセマンティックセマンティック・セマンティクス法を提案する。
提案手法は,雲のセマンティックセマンティックセグメンテーション設定の違いによるベースラインに比べて,顕著で一貫した改善を示す。
論文 参考訳(メタデータ) (2020-06-22T08:05:25Z) - Multi-Path Region Mining For Weakly Supervised 3D Semantic Segmentation
on Point Clouds [67.0904905172941]
本稿では,3次元点雲上の弱ラベルを用いた点レベルの予測のための弱教師付きアプローチを提案する。
私たちの知る限りでは、これは、クラウドレベルの弱いラベルを生の3D空間で使用して、ポイントクラウドセマンティックセグメンテーションネットワークをトレーニングする最初の方法です。
論文 参考訳(メタデータ) (2020-03-29T14:13:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。