論文の概要: Sources of Uncertainty in Supervised Machine Learning -- A Statisticians' View
- arxiv url: http://arxiv.org/abs/2305.16703v3
- Date: Tue, 28 Jan 2025 10:02:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 13:53:20.613466
- Title: Sources of Uncertainty in Supervised Machine Learning -- A Statisticians' View
- Title(参考訳): 教師付き機械学習における不確かさの源泉-統計学者の視点から
- Authors: Cornelia Gruber, Patrick Oliver Schenk, Malte Schierholz, Frauke Kreuter, Göran Kauermann,
- Abstract要約: 監視された機械学習と予測モデルは、今日、印象的な標準を達成し、数年前には理解できなかった質問に答えることが可能になった。
純粋な予測を超えて 不確実性の定量化も重要で必要です
本稿では,概念的,基礎的な科学的な視点を採用し,不確実性の原因について検討する。
- 参考スコア(独自算出の注目度): 3.0932932099777024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised machine learning and predictive models have achieved an impressive standard today, enabling us to answer questions that were inconceivable a few years ago. Besides these successes, it becomes clear, that beyond pure prediction, which is the primary strength of most supervised machine learning algorithms, the quantification of uncertainty is relevant and necessary as well. However, before quantification is possible, types and sources of uncertainty need to be defined precisely. While first concepts and ideas in this direction have emerged in recent years, this paper adopts a conceptual, basic science perspective and examines possible sources of uncertainty. By adopting the viewpoint of a statistician, we discuss the concepts of aleatoric and epistemic uncertainty, which are more commonly associated with machine learning. The paper aims to formalize the two types of uncertainty and demonstrates that sources of uncertainty are miscellaneous and can not always be decomposed into aleatoric and epistemic. Drawing parallels between statistical concepts and uncertainty in machine learning, we emphasise the role of data and their influence on uncertainty.
- Abstract(参考訳): 監視された機械学習と予測モデルは、今日、印象的な標準を達成し、数年前には理解できなかった質問に答えることが可能になった。
これらの成功に加えて、ほとんどの教師付き機械学習アルゴリズムの主要な強みである純粋予測以外にも、不確実性の定量化も重要であり、必要であることが明らかになっている。
しかし、定量化が可能である前に、型と不確実性の原因を正確に定義する必要がある。
近年,この方向の第一概念や概念が登場してきているが,本論文では概念的,基礎的な科学的な視点を採用し,不確実性の原因について検討する。
統計学者の視点を取り入れて、より一般的に機械学習と結びついている、失語症とてんかんの不確実性の概念を論じる。
本論文は,2種類の不確実性の形式化を目標とし,不確実性の源は不均一であり,必ずしも動脈硬化とてんかんに分解できないことを実証する。
機械学習における統計的概念と不確実性の間の類似性を引き合いに出し、データの役割と不確実性への影響を強調した。
関連論文リスト
- Probabilistic Modeling of Disparity Uncertainty for Robust and Efficient Stereo Matching [61.73532883992135]
本稿では,新しい不確実性を考慮したステレオマッチングフレームワークを提案する。
我々はベイズリスクを不確実性の測定として採用し、データを別々に見積もり、不確実性をモデル化する。
論文 参考訳(メタデータ) (2024-12-24T23:28:20Z) - Uncertainties of Latent Representations in Computer Vision [2.33877878310217]
この論文は、事前訓練されたコンピュータビジョンモデルの潜在表現ベクトルにそれらを追加することで、不確実性推定を容易にアクセスできるようにする。
観測不可能な潜在表現に関するこれらの観測不可能な不確実性は、確実に正しいことを示す。
論文 参考訳(メタデータ) (2024-08-26T14:02:30Z) - A comparative study of conformal prediction methods for valid uncertainty quantification in machine learning [0.0]
論文は、誰もが不確実性に気付いていて、それがどれほど重要か、そしてそれを恐れずにそれをどのように受け入れるか、という世界を探求しようとします。
しかし、正確な不確実性推定を誰でも得るための特定のフレームワークが選別され、分析される。
論文 参考訳(メタデータ) (2024-05-03T13:19:33Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
エビデンシャル・ディープ・ラーニング(Evidential Deep Learning)は、パラメトリック・ディープ・ラーニングを高次分布に拡張する手法である。
本研究では,明らかなニューラルネットワークから得られる不確実性とアンサンブルから得られる不確実性を比較する。
本研究では,従来の手法に匹敵する予測精度を実現するとともに,両方の不確実性源をしっかりと定量化しながら,明らかな深層学習モデルを示す。
論文 参考訳(メタデータ) (2023-09-22T23:04:51Z) - Model-free generalized fiducial inference [0.0]
本稿では,不正確な確率的予測推定のためのモデルフリー統計フレームワークの提案と開発を行う。
このフレームワークは、タイプ1エラーの有限サンプル制御を提供する予測セットの形式での不確実性定量化を促進する。
モデルフリー不正確なフレームワークに対する正確な確率近似の理論的および経験的特性について考察する。
論文 参考訳(メタデータ) (2023-07-24T01:58:48Z) - Uncertainty in Natural Language Processing: Sources, Quantification, and
Applications [56.130945359053776]
NLP分野における不確実性関連作業の総合的なレビューを行う。
まず、自然言語の不確実性の原因を、入力、システム、出力の3つのタイプに分類する。
我々は,NLPにおける不確実性推定の課題について論じ,今後の方向性について論じる。
論文 参考訳(メタデータ) (2023-06-05T06:46:53Z) - On Second-Order Scoring Rules for Epistemic Uncertainty Quantification [8.298716599039501]
本研究では,2次学習者が不確実性を忠実に表現する動機となる損失関数が存在しないことを示す。
この結果を証明するための主要な数学的ツールとして,2次スコアリングルールの一般化概念を導入する。
論文 参考訳(メタデータ) (2023-01-30T08:59:45Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - Teaching Uncertainty Quantification in Machine Learning through Use
Cases [0.0]
機械学習における不確実性は、一般的に機械学習コースのカリキュラムで一般的な知識として教えられるものではない。
本稿では,機械学習における不確実性に関するコースの短いカリキュラムを提案し,そのコースをユースケースの選択で補完する。
論文 参考訳(メタデータ) (2021-08-19T14:22:17Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。