論文の概要: Do GPTs Produce Less Literal Translations?
- arxiv url: http://arxiv.org/abs/2305.16806v2
- Date: Tue, 30 May 2023 00:08:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 11:43:00.305359
- Title: Do GPTs Produce Less Literal Translations?
- Title(参考訳): GPTはリテラル翻訳が少ないか?
- Authors: Vikas Raunak, Arul Menezes, Matt Post, Hany Hassan Awadallah
- Abstract要約: 大規模言語モデル(LLM)は多くの自然言語生成や理解タスクに対処できる汎用言語モデルとして登場した。
GPTからの英語(E-X)からの翻訳はリテラルが低い傾向にあり、機械翻訳の品質指標に類似またはより良いスコアが示されることがわかりました。
- 参考スコア(独自算出の注目度): 15.939607361418915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) such as GPT-3 have emerged as general-purpose
language models capable of addressing many natural language generation or
understanding tasks. On the task of Machine Translation (MT), multiple works
have investigated few-shot prompting mechanisms to elicit better translations
from LLMs. However, there has been relatively little investigation on how such
translations differ qualitatively from the translations generated by standard
Neural Machine Translation (NMT) models. In this work, we investigate these
differences in terms of the literalness of translations produced by the two
systems. Using literalness measures involving word alignment and monotonicity,
we find that translations out of English (E-X) from GPTs tend to be less
literal, while exhibiting similar or better scores on MT quality metrics. We
demonstrate that this finding is borne out in human evaluations as well. We
then show that these differences are especially pronounced when translating
sentences that contain idiomatic expressions.
- Abstract(参考訳): GPT-3のような大規模言語モデル(LLM)は多くの自然言語生成や理解タスクに対処できる汎用言語モデルとして登場した。
機械翻訳のタスク(mt)では、複数の作品がllmからの翻訳を改善するために、数発のプロンプト機構を調査した。
しかし, 標準的なニューラル機械翻訳(NMT)モデルによる翻訳と, それらの翻訳が質的にどう異なるかは, 比較的研究されていない。
本研究では,この2つのシステムによる翻訳のリテラル性の観点から,これらの差異について検討する。
単語アライメントと単調性を含むリテラルネス尺度を用いて、GPTからの英語(E-X)からの翻訳はリテラルが低い傾向にあり、MTの品質指標に類似あるいはより良いスコアが現れる。
我々は、この発見が人間の評価にも反映されていることを実証する。
その結果,慣用的な表現を含む文を翻訳する場合,これらの差異は特に顕著であることがわかった。
関連論文リスト
- IntGrad MT: Eliciting LLMs' Machine Translation Capabilities with Sentence Interpolation and Gradual MT [5.323504404265276]
大規模言語モデル(LLM)は、追加の並列コーパスを微調整することなく、翻訳において強力な性能を示している。
これまでの研究は、関連するいくつかの例や辞書や文法書などの外部リソースを活用することでこの問題を軽減することに重点を置いてきた。
本稿では,LLM固有の翻訳機能を完全に活用することを目的とした,IntGrad MTという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-15T15:26:28Z) - The Fine-Tuning Paradox: Boosting Translation Quality Without Sacrificing LLM Abilities [18.175795328685986]
機械翻訳のための微調整大型言語モデル(LLM)は、全体的な翻訳品質が改善されている。
モデルサイズは70億から65億までの範囲で,LLaMAおよびファルコン系のモデルに対して広範な翻訳評価を行う。
フォーマルなステアリングを行う能力の低下、数ショットの例による技術的翻訳の作成、文書レベルの翻訳を行う能力の低下を観察する。
論文 参考訳(メタデータ) (2024-05-30T14:25:56Z) - Distinguishing Translations by Human, NMT, and ChatGPT: A Linguistic and Statistical Approach [1.6982207802596105]
本研究では,(1)NMTとヒト翻訳(HT)からのChatGPT生成翻訳の識別可能性,(2)翻訳タイプの言語的特徴,(3)ChatGPT生成翻訳とHT,あるいはNMTとの類似度について検討する。
論文 参考訳(メタデータ) (2023-12-17T15:56:05Z) - Crossing the Threshold: Idiomatic Machine Translation through Retrieval
Augmentation and Loss Weighting [66.02718577386426]
慣用的な翻訳と関連する問題を簡易に評価する。
我々は,変圧器をベースとした機械翻訳モデルが慣用的な翻訳に対して正しくデフォルトとなる点を明らかにするための合成実験を行った。
自然慣用句の翻訳を改善するために, 単純かつ効果的な2つの手法を導入する。
論文 参考訳(メタデータ) (2023-10-10T23:47:25Z) - Towards Effective Disambiguation for Machine Translation with Large
Language Models [65.80775710657672]
我々は「あいまいな文」を翻訳する大規模言語モデルの能力について研究する。
実験の結果,提案手法はDeepLやNLLBといった最先端システムと5つの言語方向のうち4つで一致し,性能を向上できることがわかった。
論文 参考訳(メタデータ) (2023-09-20T22:22:52Z) - Revisiting Machine Translation for Cross-lingual Classification [91.43729067874503]
この分野のほとんどの研究は、機械翻訳コンポーネントではなく多言語モデルに焦点を当てている。
より強力なMTシステムを用いて、原文のトレーニングと機械翻訳テキストの推論のミスマッチを緩和することにより、翻訳テストは以前想定していたよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2023-05-23T16:56:10Z) - Decomposed Prompting for Machine Translation Between Related Languages
using Large Language Models [55.35106713257871]
DecoMTは、単語チャンク翻訳のシーケンスに翻訳プロセスを分解する、数発のプロンプトの新しいアプローチである。
DecoMTはBLOOMモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-22T14:52:47Z) - Extrinsic Evaluation of Machine Translation Metrics [78.75776477562087]
文レベルでの翻訳と翻訳の良さを区別する上で,自動尺度が信頼性が高いかどうかは不明である。
我々は,3つの下流言語タスクにおいて,最も広く使用されているMTメトリクス(chrF,COMET,BERTScoreなど)のセグメントレベル性能を評価する。
実験の結果,各指標は下流結果の外部評価と負の相関を示すことがわかった。
論文 参考訳(メタデータ) (2022-12-20T14:39:58Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
談話の適切な処理は機械翻訳(MT)の品質に大きく貢献する
文脈認識型MTにおける最近の研究は、評価中に少量の談話現象を標的にしようとしている。
談話現象のモデル性能を識別・評価するタグの集合である,多言語談話認識ベンチマークを開発した。
論文 参考訳(メタデータ) (2021-09-15T17:29:30Z) - Translating the Unseen? Yor\`ub\'a $\rightarrow$ English MT in
Low-Resource, Morphologically-Unmarked Settings [8.006185289499049]
特定の特徴が一方で形態素的にマークされているが、他方で欠落または文脈的にマークされている言語間の翻訳は、機械翻訳の重要なテストケースである。
本研究では,Yorub'a の素名詞を英語に翻訳する際に,SMTシステムと2つの NMT システムとの比較を行う。
論文 参考訳(メタデータ) (2021-03-07T01:24:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。