Playing repeated games with Large Language Models
- URL: http://arxiv.org/abs/2305.16867v1
- Date: Fri, 26 May 2023 12:17:59 GMT
- Title: Playing repeated games with Large Language Models
- Authors: Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon Oh, Matthias
Bethge, Eric Schulz
- Abstract summary: We use behavioral game theory to study Large Language Models' cooperation and coordination behavior.
Our results show that LLMs generally perform well in such tasks and also uncover persistent behavioral signatures.
These results enrich our understanding of LLM's social behavior and pave the way for a behavioral game theory for machines.
- Score: 20.63964279913456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are transforming society and permeating into
diverse applications. As a result, LLMs will frequently interact with us and
other agents. It is, therefore, of great societal value to understand how LLMs
behave in interactive social settings. Here, we propose to use behavioral game
theory to study LLM's cooperation and coordination behavior. To do so, we let
different LLMs (GPT-3, GPT-3.5, and GPT-4) play finitely repeated games with
each other and with other, human-like strategies. Our results show that LLMs
generally perform well in such tasks and also uncover persistent behavioral
signatures. In a large set of two players-two strategies games, we find that
LLMs are particularly good at games where valuing their own self-interest pays
off, like the iterated Prisoner's Dilemma family. However, they behave
sub-optimally in games that require coordination. We, therefore, further focus
on two games from these distinct families. In the canonical iterated Prisoner's
Dilemma, we find that GPT-4 acts particularly unforgivingly, always defecting
after another agent has defected only once. In the Battle of the Sexes, we find
that GPT-4 cannot match the behavior of the simple convention to alternate
between options. We verify that these behavioral signatures are stable across
robustness checks. Finally, we show how GPT-4's behavior can be modified by
providing further information about the other player as well as by asking it to
predict the other player's actions before making a choice. These results enrich
our understanding of LLM's social behavior and pave the way for a behavioral
game theory for machines.
Related papers
- LLMs May Not Be Human-Level Players, But They Can Be Testers: Measuring Game Difficulty with LLM Agents [10.632179121247466]
We propose a general game-testing framework using LLM agents and test it on two widely played strategy games: Wordle and Slay the Spire.
Our results reveal an interesting finding: although LLMs may not perform as well as the average human player, their performance, when guided by simple, generic prompting techniques, shows a statistically significant and strong correlation with difficulty indicated by human players.
This suggests that LLMs could serve as effective agents for measuring game difficulty during the development process.
arXiv Detail & Related papers (2024-10-01T18:40:43Z) - See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses [51.975495361024606]
We propose a Self-Challenge evaluation framework with human-in-the-loop.
Starting from seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize error patterns that can be used to generate new instances.
We then build a benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using these patterns, with human-annotated gold responses.
arXiv Detail & Related papers (2024-08-16T19:01:52Z) - Are Large Language Models Strategic Decision Makers? A Study of Performance and Bias in Two-Player Non-Zero-Sum Games [56.70628673595041]
Large Language Models (LLMs) have been increasingly used in real-world settings, yet their strategic decision-making abilities remain largely unexplored.
This work investigates the performance and merits of LLMs in canonical game-theoretic two-player non-zero-sum games, Stag Hunt and Prisoner Dilemma.
Our structured evaluation of GPT-3.5, GPT-4-Turbo, GPT-4o, and Llama-3-8B shows that these models, when making decisions in these games, are affected by at least one of the following systematic biases.
arXiv Detail & Related papers (2024-07-05T12:30:02Z) - Nicer Than Humans: How do Large Language Models Behave in the Prisoner's Dilemma? [0.1474723404975345]
We study the cooperative behavior of Llama2 when playing the Iterated Prisoner's Dilemma against random adversaries displaying various levels of hostility.
We find that Llama2 tends not to initiate defection but it adopts a cautious approach towards cooperation.
In comparison to prior research on human participants, Llama2 exhibits a greater inclination towards cooperative behavior.
arXiv Detail & Related papers (2024-06-19T14:51:14Z) - How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments [83.78240828340681]
We introduce GAMA($gamma$)-Bench, a new framework for evaluating Large Language Models' Gaming Ability in Multi-Agent environments.
$gamma$-Bench includes eight classical game theory scenarios and a dynamic scoring scheme specially designed to assess LLMs' performance.
Results indicate GPT-3.5 demonstrates strong robustness but limited generalizability, which can be enhanced using methods like Chain-of-Thought.
arXiv Detail & Related papers (2024-03-18T14:04:47Z) - Will GPT-4 Run DOOM? [0.0]
We show that GPT-4's reasoning and planning capabilities extend to the 1993 first-person shooter Doom.
We find that GPT-4 can play the game to a passable degree: it is able to manipulate doors, combat enemies, and perform pathing.
arXiv Detail & Related papers (2024-03-08T17:30:41Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - Can Large Language Models Serve as Rational Players in Game Theory? A
Systematic Analysis [16.285154752969717]
This study systematically analyzes Large Language Models (LLMs) in the context of game theory.
Experiments indicate that even the current state-of-the-art LLM exhibits substantial disparities compared to humans in game theory.
arXiv Detail & Related papers (2023-12-09T07:33:26Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay.
We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction.
Results affirm the framework's effectiveness in creating adaptive agents and suggest LLM-based agents' potential in navigating dynamic social interactions.
arXiv Detail & Related papers (2023-10-23T14:35:26Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.