Game Development as Human-LLM Interaction
- URL: http://arxiv.org/abs/2408.09386v2
- Date: Mon, 16 Dec 2024 06:58:49 GMT
- Title: Game Development as Human-LLM Interaction
- Authors: Jiale Hong, Hongqiu Wu, Hai Zhao,
- Abstract summary: This paper introduces the Chat Game Engine (ChatGE) powered by Human-LLM interaction.
ChatGE allows everyone to develop a custom game using natural language through Human-LLM interaction.
We construct a ChatGE for poker games as a case study and evaluate it from two perspectives: interaction quality and code correctness.
- Score: 55.03293214439741
- License:
- Abstract: Game development is a highly specialized task that relies on a complex game engine powered by complex programming languages, preventing many gaming enthusiasts from handling it. This paper introduces the Chat Game Engine (ChatGE) powered by LLM, which allows everyone to develop a custom game using natural language through Human-LLM interaction. To enable an LLM to function as a ChatGE, we instruct it to perform the following processes in each turn: (1) $P_{script}$: configure the game script segment based on the user's input; (2) $P_{code}$: generate the corresponding code snippet based on the game script segment; (3) $P_{utter}$: interact with the user, including guidance and feedback. We propose a data synthesis pipeline based on LLM to generate game script-code pairs and interactions from a few manually crafted seed data. We propose a three-stage progressive training strategy to transfer the dialogue-based LLM to our ChatGE smoothly. We construct a ChatGE for poker games as a case study and comprehensively evaluate it from two perspectives: interaction quality and code correctness.
Related papers
- LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
We propose a goal-oriented, persona-based method to automatically generate diverse multi-turn dialogues simulating human-chatbot interaction.
Our method can simulate human-chatbot dialogues with a high indistinguishability rate.
arXiv Detail & Related papers (2024-07-04T14:49:46Z) - A Dialogue Game for Eliciting Balanced Collaboration [64.61707514432533]
We present a two-player 2D object placement game in which the players must negotiate the goal state themselves.
We show empirically that human players exhibit a variety of role distributions, and that balanced collaboration improves task performance.
arXiv Detail & Related papers (2024-06-12T13:35:10Z) - Bootstrapping LLM-based Task-Oriented Dialogue Agents via Self-Talk [11.706292228586332]
Large language models (LLMs) are powerful dialogue agents, but specializing them towards fulfilling a specific function can be challenging.
We propose a more effective method for data collection through LLMs engaging in a conversation in various roles.
This approach generates a training data via "self-talk" of LLMs that can be refined and utilized for supervised fine-tuning.
arXiv Detail & Related papers (2024-01-10T09:49:10Z) - Let the LLMs Talk: Simulating Human-to-Human Conversational QA via
Zero-Shot LLM-to-LLM Interactions [19.365615476223635]
Conversational question-answering systems aim to create interactive search systems that retrieve information by interacting with users.
Existing work uses human annotators to play the roles of the questioner (student) and the answerer (teacher)
We propose a simulation framework that employs zero-shot learner LLMs for simulating teacher-student interactions.
arXiv Detail & Related papers (2023-12-05T17:38:02Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
Large language models (LLMs) have emerged as powerful and general solutions to many natural language tasks.
However, many of the most important applications of language generation are interactive, where an agent has to talk to a person to reach a desired outcome.
In this work, we explore a new method for adapting LLMs with RL for such goal-directed dialogue.
arXiv Detail & Related papers (2023-11-09T18:45:16Z) - Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as
Conversational Agents [20.202525145391093]
Recent work has proposed a methodology for the systematic evaluation of "Situated Language Understanding Agents"
This paper explores: Can Large Language Models be evaluated meaningfully by exposing them to constrained game-like settings?
As a proof of concept, this paper investigates five interaction settings, showing that current chat-optimised LLMs are, to an extent, capable to follow game-play instructions.
arXiv Detail & Related papers (2023-05-22T19:56:10Z) - AudioGPT: Understanding and Generating Speech, Music, Sound, and Talking
Head [82.69233563811487]
Large language models (LLMs) have exhibited remarkable capabilities across a variety of domains and tasks, challenging our understanding of learning and cognition.
We propose a multi-modal AI system named AudioGPT, which complements LLMs with foundation models to process complex audio information.
arXiv Detail & Related papers (2023-04-25T17:05:38Z) - A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on
Reasoning, Hallucination, and Interactivity [79.12003701981092]
We carry out an extensive technical evaluation of ChatGPT using 23 data sets covering 8 different common NLP application tasks.
We evaluate the multitask, multilingual and multi-modal aspects of ChatGPT based on these data sets and a newly designed multimodal dataset.
ChatGPT is 63.41% accurate on average in 10 different reasoning categories under logical reasoning, non-textual reasoning, and commonsense reasoning.
arXiv Detail & Related papers (2023-02-08T12:35:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.